Photonic Multilayer Structure Induced High Near-Infrared (NIR) Blockage as Energy-Saving Window

被引:35
作者
Kim, Jiwon [1 ]
Baek, Sangwon [1 ]
Park, Jae Yong [1 ]
Kim, Kwang Ho [2 ]
Lee, Jong-Lam [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[2] Pusan Natl Univ, Dept Mat Sci & Engn, Pusan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
multilayer structure; near-infrared reflection; transparent energy-saving window; OPTICAL-PROPERTIES; PERFECT ABSORBERS; METASURFACE; FILM; DEPOSITION; EFFICIENCY; DESIGN; COLOR; OXIDE;
D O I
10.1002/smll.202100654
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Energy-saving window that selectively blocks near-infrared (NIR) is a promising technology to save energy consumption. However, it is hard to achieve both high transmittance in visible light and high reflectance in NIR for the energy-saving windows. Here, a TiO2/Ag/TiO2/SiO2/TiO2 multilayer is demonstrated on a glass substrate to selectively block NIR while maintaining high transmittance to visible light. The thickness of a TiO2/Ag/TiO2 structure is first design and optimized; the metal layer reflects NIR and the dielectric layers increase transmittance of visible light with zero reflection condition. To further enhance NIR-blocking capability, a TiO2 back reflector is implemented with a SiO2 spacer to TiO2/Ag/TiO2 structure. The back reflector can induce additional Fresnel reflection without sacrificing transmittance to visible light. The optimal TiO2 (32 nm)/Ag (22 nm)/TiO2 (30 nm)/SiO2 (100 nm)/TiO2 (110 nm)/glass shows solar energy rejection 89.2% (reflection 86.5%, absorption 2.7%) in NIR, visible transmittance 69.9% and high long-wave (3 <= lambda <= 20 mu m) reflectance > 95%. This proposed visible-transparent, near-infrared-reflecting multilayer film can be applied to the windows of buildings and automobiles to reduce the energy consumption.
引用
收藏
页数:8
相关论文
共 55 条
[41]   Impacts of projected urban expansion and global warming on cooling energy demand over a semiarid region [J].
Tewari, Mukul ;
Salamanca, Francisco ;
Martilli, Alberto ;
Treinish, Lloyd ;
Mahalov, Alex .
ATMOSPHERIC SCIENCE LETTERS, 2017, 18 (11) :419-426
[42]   Graphene-based tunable near-infrared absorber [J].
Thomas, Leena ;
Sorathiya, Vishal ;
Patel, Shobhit K. ;
Guo, Tianjing .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2019, 61 (05) :1161-1165
[43]   NIR-shielding films based on PEDOT-PSS/polysiloxane and polysilsesquioxane hybrid [J].
Tsukada, Satoru ;
Nakanishi, Yuki ;
Kai, Hiroyuki ;
Ishimoto, Takayoshi ;
Okada, Kenta ;
Adachi, Yohei ;
Imae, Ichiro ;
Ohshita, Joji .
JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (07)
[44]   Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene [J].
Wang, Ling ;
Bisoyi, Hari Krishna ;
Zheng, Zhigang ;
Gutierrez-Cuevas, Karla G. ;
Singh, Gautam ;
Kumar, Satyendra ;
Bunning, Timothy J. ;
Li, Quan .
MATERIALS TODAY, 2017, 20 (05) :230-237
[45]  
Wang SQ, 2016, Principles and practice of photoprotection
[46]   Design of Transparent Metasurfaces Based on Asymmetric Nanostructures for Directional and Selective Absorption [J].
Wu, Dong ;
Meng, Yang ;
Liu, Chang .
MATERIALS, 2020, 13 (17)
[47]   High-κ dielectrics and advanced channel concepts for Si MOSFET [J].
Wu, Mo ;
Alivov, Y. I. ;
Morkoc, Hadis .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2008, 19 (10) :915-951
[48]   A Narrow Dual-Band Monolayer Unpatterned Graphene-Based Perfect Absorber with Critical Coupling in the Near Infrared [J].
Wu, Pinghui ;
Chen, Zeqiang ;
Xu, Danyang ;
Zhang, Congfen ;
Jian, Ronghua .
MICROMACHINES, 2020, 11 (01)
[49]   Theoretical discussions of perfect window, ideal near infrared solar spectrum regulating window and current thermochromic window [J].
Ye, Hong ;
Meng, Xianchun ;
Xu, Bin .
ENERGY AND BUILDINGS, 2012, 49 :164-172
[50]   Totally-organic near-infrared shielding materials by conductive cellulose nanofibers [J].
Yoshida, K. ;
Nagaoka, S. ;
Horikawa, M. ;
Noguchi, H. ;
Ihara, H. .
THIN SOLID FILMS, 2020, 709