Asymptotic behavior and blow-up of solutions for infinitely degenerate semilinear parabolic equations with logarithmic nonlinearity

被引:1
作者
Chen, Hua [1 ]
Xu, Huiyang [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Infinitely degenerate parabolic equation; Global existence; Blow-up; Logarithmic nonlinearity; ELLIPTIC-OPERATORS; HEAT-EQUATION; HYPERBOLIC-EQUATIONS; GLOBAL SOLUTION; MULTIPLE SOLUTIONS; HYPOELLIPTICITY; INSTABILITY; REGULARITY; NONEXISTENCE; EXISTENCE;
D O I
10.1016/j.jmaa.2018.09.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the initial-boundary value problem for infinitely degenerate semilinear parabolic equations with logarithmic nonlinearity u(t) - Delta(X)u = u log vertical bar u vertical bar, where X = (X-1, X-2, ... , X-m) is an infinitely degenerate system of vector fields, and Delta(X) := Sigma(m)(j=1) X-j(2) is an infinitely degenerate elliptic operator. Using potential well method, we first prove the invariance of some sets and vacuum isolating of solutions. Then, by the Galerkin method and the logarithmic Sobolev inequality, we obtain the global existence and blow-up at +infinity of solutions with low initial energy or critical initial energy, and we also discuss the asymptotic behavior of the solutions. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:852 / 871
页数:20
相关论文
共 30 条
[2]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304
[3]   Multiplicity and regularity of solutions for infinitely degenerate elliptic equations with a free perturbation [J].
Chen, Hua ;
Luo, Peng ;
Tian, Shuying .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (04) :849-867
[4]   Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity [J].
Chen, Hua ;
Luo, Peng ;
Liu, Gongwei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) :84-98
[5]   Existence and regularity of multiple solutions for infinitely degenerate nonlinear elliptic equations with singular potential [J].
Chen, Hua ;
Luo, Peng ;
Tian, Shuying .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (09) :3300-3333
[6]   Global existence and nonexistence for semilinear parabolic equations with conical degeneration [J].
Chen, Hua ;
Liu, Gongwei .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2012, 3 (03) :329-349
[7]   The existence and regularity of multiple solutions for a class of infinitely degenerate elliptic equations [J].
Chen, Hua ;
Li, Ke .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (03) :368-385
[8]  
Christ M., 1997, P INT C SEV COMPL VA
[9]   A singular parabolic equation with logarithmic nonlinearity and Lp-initial data [J].
Ferreira, Lucas C. F. ;
de Queiroz, Olivaine S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (02) :349-365
[10]   Blow up rate for semilinear heat equations with subcritical nonlinearity [J].
Giga, Y ;
Matsui, SY ;
Sasayama, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) :483-514