A Skin-Inspired Triboelectric Nanogenerator with an Interpenetrating Structure for Motion Sensing and Energy Harvesting

被引:37
作者
You, Aimei [1 ]
Zhang, Xieli [1 ]
Peng, Xiao [2 ]
Dong, Kai [2 ]
Lu, Yuyuan [3 ]
Zhang, Qiang [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Electroanalyt Chem, Changchun Inst Appl Chem, Changchun 130022, Peoples R China
[2] Chinese Acad Sci, CAS Ctr Excellence Nanosci, Beijing Inst Nanoenergy & Nanosyst, Beijing Key Lab Micronano Energy & Sensor, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Chem & Phys, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
electrospinning nanofibers; energy harvesting; motion sensors; self-powered; triboelectric nanogenerators; TEXTILES; POWER;
D O I
10.1002/mame.202100147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rapid advancements in wearable electronics impose the challenge on power supply devices. Herein, a flexible single-electrode triboelectric nanogenerator (SE-TENG) that enables both human motion sensing and biomechanical energy harvesting is reported. The SE-TENG is fabricated by interpenetrating Ag-coated polyethylene terephthalate (PET) nanofibers within a polydimethylsiloxane (PDMS) elastomer. The Ag coating and PDMS are performed as the electrode and dielectric material for the SE-TENG, respectively. The Ag-coated PET nanofibers enlarge the electrode surface area, which is beneficial to increase sensing sensitivity. The flexible SE-TENG sensor shows the capability of outputting alternating electrical signals with an open-circuit voltage up to 50 V and a short-circuit current up to 200 nA in response to externally applied pressure. It is used to sense various types of human motions and harvest electric energy from body motion. The harvested energy can successfully power wearable electronics, such as an electronic watch and light-emitting diode. Therefore, the as-prepared SE-TENG sensor with a pressure response and self-powered capability provides potential applications in wearable sensors or flexible electronics for personal healthcare and human-machine interfaces.
引用
收藏
页数:9
相关论文
共 32 条
[1]   The Future of Smart Textiles: User Interfaces and Health Monitors [J].
Andrew, Trisha L. .
MATTER, 2020, 2 (04) :794-795
[2]   An Eco-friendly Porous Nanocomposite Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Motion Sensing [J].
Bai, Zhiqing ;
Xu, Yunlong ;
Li, Jiecong ;
Zhu, Jingjing ;
Gao, Can ;
Zhang, Yao ;
Wang, Jing ;
Guo, Jiansheng .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (38) :42880-42890
[3]   Textile-based triboelectric nanogenerators with high-performance via optimized functional elastomer composited tribomaterials as wearable power source [J].
Bai, Zhiqing ;
Zhang, Zhi ;
Li, Jingyi ;
Guo, Jiansheng .
NANO ENERGY, 2019, 65
[4]   Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring [J].
Cao, Ran ;
Wang, Jiaona ;
Zhao, Shuyu ;
Yang, Wei ;
Yuan, Zuqing ;
Yin, Yingying ;
Du, Xinyu ;
Li, Nian-Wu ;
Zhang, Xiuling ;
Li, Xiuyan ;
Wang, Zhong Lin ;
Li, Congju .
NANO RESEARCH, 2018, 11 (07) :3771-3779
[5]   Smart Textiles for Electricity Generation [J].
Chen, Guorui ;
Li, Yongzhong ;
Bick, Michael ;
Chen, Jun .
CHEMICAL REVIEWS, 2020, 120 (08) :3668-3720
[6]  
Chen J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.138, 10.1038/NENERGY.2016.138]
[7]   Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing [J].
Dong, Kai ;
Peng, Xiao ;
An, Jie ;
Wang, Aurelia Chi ;
Luo, Jianjun ;
Sun, Baozhong ;
Wang, Jie ;
Wang, Zhong Lin .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence [J].
Dong, Kai ;
Peng, Xiao ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2020, 32 (05)
[9]   A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing [J].
Dong, Kai ;
Wu, Zhiyi ;
Deng, Jianan ;
Wang, Aurelia C. ;
Zou, Haiyang ;
Chen, Chaoyu ;
Hu, Dongmei ;
Gu, Bohong ;
Sun, Baozhong ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2018, 30 (43)
[10]   3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors [J].
Dong, Kai ;
Deng, Jianan ;
Zi, Yunlong ;
Wang, Yi-Cheng ;
Xu, Cheng ;
Zou, Haiyang ;
Ding, Wenbo ;
Dai, Yejing ;
Gu, Bohong ;
Sun, Baozhong ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2017, 29 (38)