Monte Carlo simulation of semiconductor detector response to 222Rn and 220Rn environments

被引:2
作者
Irlinger, J. [1 ]
Trinkl, S. [2 ]
Wielunksi, M. [1 ]
Tschiersch, J. [1 ]
Ruehm, W. [1 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Radiat Protect, Ingolstadter Landstr 1, D-85764 Oberschleissheim, Germany
[2] Tech Univ Munich, Phys Dept, D-85748 Garching, Germany
关键词
Radon; Thoron; Detector; Monte-Carlo; Simulation; Spectroscopy; THORON CONCENTRATIONS; RADON; PROGENY; DWELLINGS; EXPOSURE; DEPOSITION;
D O I
10.1016/j.jenvrad.2016.03.025
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A new electronic radon/thoron monitor employing semiconductor detectors based on a passive diffusion chamber design has been recently developed at the Helmholtz Zentrum Munchen (HMGU). This device allows for acquisition of alpha particle energy spectra, in order to distinguish alpha particles originating from radon and radon progeny decays, as well as those originating from thoron and its progeny decays. A Monte-Carlo application is described which uses the Geant4 toolkit to simulate these alpha particle spectra. Reasonable agreement between measured and simulated spectra were obtained for both Rn-220 and Rn-222, in the energy range between 1 and 10 MeV. Measured calibration factors could be reproduced by the simulation, given the uncertainties involved in the measurement and simulation. The simulated alpha particle spectra can now be used to interpret spectra measured in mixed radon/thoron atmospheres. The results agreed well with measurements performed in both radon and thoron gas environments. It is concluded that the developed simulation allows for an accurate prediction of calibration factors and alpha particle energy spectra. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:64 / 70
页数:7
相关论文
共 42 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
[Anonymous], 2010, UNSCEAR 2008 Report. Sources and effects of ionizing radiation. Volume I: Report to the General Assembly, VI
[3]  
Berger M. J., 1998, STOPPING POWER AND R
[4]  
Durridge, 2014, RAD7 RADON DETECTOR
[5]  
Eckerman K., 2008, Annals of the ICRP, V38, P9
[6]  
Eckerman K. F., 2009, HANDBOOK OF ANATOMIC
[7]   A method to reproduce alpha-particle spectra measured with semiconductor detectors [J].
Fernandez Timon, A. ;
Jurado Vargas, M. ;
Martin Sanchez, A. .
APPLIED RADIATION AND ISOTOPES, 2010, 68 (4-5) :941-945
[8]  
Firestone RB, 2000, THE BERKELEY LABORAT
[9]   REAL-TIME MEASUREMENT OF INDIVIDUAL OCCUPATIONAL RADON EXPOSURES IN TOMBS OF THE VALLEY OF THE KINGS, EGYPT [J].
Gruber, E. ;
Salama, E. ;
Ruehm, W. .
RADIATION PROTECTION DOSIMETRY, 2011, 144 (1-4) :620-626
[10]   Thoron detection with an active Radon exposure meter-First results [J].
Irlinger, J. ;
Wielunski, M. ;
Ruehm, W. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (02)