On the inductive Alperin-McKay conditions in the maximally split case

被引:2
作者
Cabanes, Marc [1 ]
Fry, A. A. Schaeffer [2 ]
Spaeth, Britta [3 ]
机构
[1] CNRS, Inst Math Jussieu PRG, 8 Pl Aurelie Nemours, F-75205 Paris, France
[2] Metropolitan State Univ Denver, Dept Math & Stat, Denver, CO 80217 USA
[3] Univ Wuppertal, Sch Math & Nat Sci, Gaussstr 20, D-42119 Wuppertal, Germany
基金
英国工程与自然科学研究理事会;
关键词
Local-global conjectures; Characters; McKay conjecture; Alperin-McKay conjecture; Finite simple groups; Lie type; Harish-Chandra series; Blocks; Height-Zero Characters; REDUCTION THEOREM; CONJECTURE; BLOCKS; CHARACTERS; WEIGHT;
D O I
10.1007/s00209-021-02764-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Alperin-McKay conjecture relates height zero characters of an l-block with the ones of its Brauer correspondent. This conjecture has been reduced to the so-called inductive Alperin-McKay conditions about quasi-simple groups by the third author. The validity of those conditions is still open for groups of Lie type. The present paper describes characters of height zero in l-blocks of groups of Lie type over a field with q elements when l divides q- 1. We also give information about l-blocks and Brauer correspondents. As an application we show that quasi-simple groups of type C over Fq satisfy the inductive Alperin-McKay conditions for primes l = 5 and dividing q - 1. Some methods to that end are adapted from Malle and Spath (Ann. Math. (2) 184:869-908, 2016).
引用
收藏
页码:2419 / 2441
页数:23
相关论文
共 29 条
[11]   Inductive AM condition for the alternating groups in characteristic 2 [J].
Denoncin, David .
JOURNAL OF ALGEBRA, 2014, 404 :1-17
[12]   Sp6(2a) is "Good" for the McKay, Alperin weight, and related local-global conjectures [J].
Fry, Amanda A. Schaeffer .
JOURNAL OF ALGEBRA, 2014, 401 :13-47
[13]   A NOTE ON HARISH-CHANDRA INDUCTION [J].
GECK, M .
MANUSCRIPTA MATHEMATICA, 1993, 80 (04) :393-401
[14]  
Gorenstein D., 1998, CLASSIFICATION FINIT
[15]   A reduction theorem for the McKay conjecture [J].
Isaacs, I. M. ;
Malle, Gunter ;
Navarro, Gabriel .
INVENTIONES MATHEMATICAE, 2007, 170 (01) :33-101
[16]  
Isaacs I.M., 2006, CHARACTER THEORY FIN
[17]   LUSZTIG INDUCTION AND l-BLOCKS OF FINITE REDUCTIVE GROUPS [J].
Kessar, Radha ;
Malle, Gunter .
PACIFIC JOURNAL OF MATHEMATICS, 2015, 279 (1-2) :269-298
[18]  
LUSZTIG G, 1988, ASTERISQUE, P157
[19]  
Lusztig G., 1984, Annals of Mathematics Studies, V107, DOI [10.1515/9781400881772, DOI 10.1515/9781400881772]
[20]  
Malle G., 2007, REPRESENT THEOR, V11, P192