Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing

被引:24
作者
Gumerson, Jessica D. [1 ]
Alsufyani, Amal [1 ,2 ,3 ]
Yu, Wenhan [4 ]
Lei, Jingqi [5 ]
Sun, Xun [1 ]
Dong, Lijin [5 ]
Wu, Zhijian [4 ]
Li, Tiansen [1 ]
机构
[1] NEI, Neurobiol Neurodegenerat & Repair Lab N NRL, Bethesda, MD 20892 USA
[2] King Saud Bin Abdulaziz Univ Hlth Sci, Jeddah, Saudi Arabia
[3] Montgomery Coll, Rockville, MD USA
[4] NEI, Ocular Gene Therapy Core, Bethesda, MD 20892 USA
[5] NEI, Genet Engn Core, Bethesda, MD 20892 USA
关键词
LINKED RETINITIS-PIGMENTOSA; RETINAL DYSTROPHY; THERAPY; MOUSE; MUTATIONS; STABILITY; TRANSPORT; EFFICACY; PATIENT; MODEL;
D O I
10.1038/s41434-021-00258-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations in the gene for Retinitis Pigmentosa GTPase Regulator (RPGR) cause the X-linked form of inherited retinal degeneration, and the majority are frameshift mutations in a highly repetitive, purine-rich region of RPGR known as the OFR15 exon. Truncation of the reading frame in this terminal exon ablates the functionally important C-terminal domain. We hypothesized that targeted excision in ORF15 by CRISPR/Cas9 and the ensuing repair by non-homologous end joining could restore RPGR reading frame in a portion of mutant photoreceptors thereby correcting gene function in vivo. We tested this hypothesis in the rd9 mouse, a naturally occurring mutant line that carries a frameshift mutation in RPGR(ORF15), through a combination of germline and somatic gene therapy approaches. In germline gene-edited rd9 mice, probing with RPGR domain-specific antibodies demonstrated expression of full length RPGR(ORF15) protein. Hallmark features of RPGR mutation-associated early disease phenotypes, such as mislocalization of cone opsins, were no longer present. Subretinal injections of the same guide RNA (sgRNA) carried in AAV sgRNA and SpCas9 expression vectors restored reading frame of RPGR(ORF15) in a subpopulation of cells with broad distribution throughout the retina, confirming successful correction of the mutation. These data suggest that a simplified form of genome editing mediated by CRISPR, as described here, could be further developed to repair RPGR(ORF15) mutations in vivo.
引用
收藏
页码:81 / 93
页数:13
相关论文
共 50 条
  • [41] Efficient SSA-mediated precise genome editing using CRISPR/Cas9
    Li, Xinyi
    Bai, Yichun
    Cheng, Xinzhen
    Kalds, Peter Girgis Tawfek
    Sun, Bing
    Wu, Yun
    Lv, Huijiao
    Xu, Kun
    Zhang, Zhiying
    FEBS JOURNAL, 2018, 285 (18) : 3362 - 3375
  • [42] Synthesis and Evaluation of pH-Sensitive Multifunctional Lipids for Efficient Delivery of CRISPR/Cas9 in Gene Editing
    Sung, Da
    Sun, Zhanhu
    Jiang, Hongfa
    Vaidya, Amita M.
    Xin, Rui
    Ayat, Nadia R.
    Schilb, Andrew L.
    Qiao, Peter L.
    Han, Zheng
    Naderi, Amirreza
    Lu, Zheng-Rong
    BIOCONJUGATE CHEMISTRY, 2019, 30 (03) : 667 - 678
  • [43] The Use of CRISPR/Cas9 Gene Editing to Confirm Congenic Contaminations in Host-Pathogen Interaction Studies
    Ferrand, Jonathan
    Croft, Nathan P.
    Pepin, Genevieve
    Diener, Kerrilyn R.
    Wu, Di
    Mangan, Niamh E.
    Pedersen, John
    Behlke, Mark A.
    Hayball, John D.
    Purcell, Anthony W.
    Ferrero, Richard L.
    Gantier, Michael P.
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2018, 8
  • [44] Efficient Gene Knockout in Goats Using CRISPR/Cas9 System
    Ni, Wei
    Qiao, Jun
    Hu, Shengwei
    Zhao, Xinxia
    Regouski, Misha
    Yang, Min
    Polejaeva, Irina A.
    Chen, Chuangfu
    PLOS ONE, 2014, 9 (09):
  • [45] A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation
    Farasat, Iman
    Salis, Howard M.
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (01)
  • [46] A review of CRISPR Cas9 for ASCVD: treatment strategies and could target PSCK9 gene using CRISPR cas9 prevent the patient from atherosclerotic vascular disease?
    Suwito, Bambang Edi
    Adji, Arga Setyo
    Wardani, Vira Aulia Kusuma
    Widjaja, Jordan Steven
    Angel, Syalomitha Claudia Stefanie
    Rahman, Firman Suryadi
    BALI MEDICAL JOURNAL, 2022, 11 (02) : 985 - 993
  • [47] CRISPR/Cas9 gene editing in Huh7 and Hepa RG cell lines
    Paslaru, Liliana
    Alexandru, Petruta
    Cretoiu, Sanda M.
    Dima, Simona O.
    Popescu, Irinel
    ROMANIAN BIOTECHNOLOGICAL LETTERS, 2019, 24 (02): : 216 - 228
  • [48] Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9
    Cheng, Ranran
    Peng, Jin
    Yan, Yonghong
    Cao, Peili
    Wang, Jiewei
    Qiu, Chen
    Tang, Lichun
    Liu, Di
    Tang, Li
    Jin, Jianping
    Huang, Xingxu
    He, Fuchu
    Zhang, Pumin
    FEBS LETTERS, 2014, 588 (21) : 3954 - 3958
  • [49] Deciphering the Thermodynamic Landscape of CRISPR/Cas9: Insights into Enhancing Gene Editing Precision and Efficiency
    Kumar, Ajit
    Daripa, Purba
    Rasool, Kaiser
    Chakraborty, Debojyoti
    Jain, Niyati
    Maiti, Souvik
    JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (35) : 8409 - 8422
  • [50] A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing
    Koppes, Erik A.
    Redel, Bethany K.
    Johnson, Marie A.
    Skvorak, Kristen J.
    Ghaloul-Gonzalez, Lina
    Yates, Megan E.
    Lewis, Dale W.
    Gollin, Susanne M.
    Wu, Yijen L.
    Christ, Shawn E.
    Yerle, Martine
    Leshinski, Angela
    Spate, Lee D.
    Benne, Joshua A.
    Murphy, Stephanie L.
    Samuel, Melissa S.
    Walters, Eric M.
    Hansen, Sarah A.
    Wells, Kevin D.
    Lichter-Konecki, Uta
    Wagner, Robert A.
    Newsome, Joseph T.
    Dobrowolski, Steven F.
    Vockley, Jerry
    Prather, Randall S.
    Nicholls, Robert D.
    JCI INSIGHT, 2020, 5 (20)