Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing

被引:24
作者
Gumerson, Jessica D. [1 ]
Alsufyani, Amal [1 ,2 ,3 ]
Yu, Wenhan [4 ]
Lei, Jingqi [5 ]
Sun, Xun [1 ]
Dong, Lijin [5 ]
Wu, Zhijian [4 ]
Li, Tiansen [1 ]
机构
[1] NEI, Neurobiol Neurodegenerat & Repair Lab N NRL, Bethesda, MD 20892 USA
[2] King Saud Bin Abdulaziz Univ Hlth Sci, Jeddah, Saudi Arabia
[3] Montgomery Coll, Rockville, MD USA
[4] NEI, Ocular Gene Therapy Core, Bethesda, MD 20892 USA
[5] NEI, Genet Engn Core, Bethesda, MD 20892 USA
关键词
LINKED RETINITIS-PIGMENTOSA; RETINAL DYSTROPHY; THERAPY; MOUSE; MUTATIONS; STABILITY; TRANSPORT; EFFICACY; PATIENT; MODEL;
D O I
10.1038/s41434-021-00258-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations in the gene for Retinitis Pigmentosa GTPase Regulator (RPGR) cause the X-linked form of inherited retinal degeneration, and the majority are frameshift mutations in a highly repetitive, purine-rich region of RPGR known as the OFR15 exon. Truncation of the reading frame in this terminal exon ablates the functionally important C-terminal domain. We hypothesized that targeted excision in ORF15 by CRISPR/Cas9 and the ensuing repair by non-homologous end joining could restore RPGR reading frame in a portion of mutant photoreceptors thereby correcting gene function in vivo. We tested this hypothesis in the rd9 mouse, a naturally occurring mutant line that carries a frameshift mutation in RPGR(ORF15), through a combination of germline and somatic gene therapy approaches. In germline gene-edited rd9 mice, probing with RPGR domain-specific antibodies demonstrated expression of full length RPGR(ORF15) protein. Hallmark features of RPGR mutation-associated early disease phenotypes, such as mislocalization of cone opsins, were no longer present. Subretinal injections of the same guide RNA (sgRNA) carried in AAV sgRNA and SpCas9 expression vectors restored reading frame of RPGR(ORF15) in a subpopulation of cells with broad distribution throughout the retina, confirming successful correction of the mutation. These data suggest that a simplified form of genome editing mediated by CRISPR, as described here, could be further developed to repair RPGR(ORF15) mutations in vivo.
引用
收藏
页码:81 / 93
页数:13
相关论文
共 50 条
  • [31] Prospects and challenges of CRISPR/Cas9 gene-editing technology in cancer research
    Ning, Li
    Xi, Jiahui
    Zi, Yin
    Chen, Min
    Zou, Qingjian
    Zhou, Xiaoqing
    Tang, Chengcheng
    CLINICAL GENETICS, 2023, 104 (06) : 613 - 624
  • [32] CRISPR/Cas9 genome editing approaches for psychiatric research
    Gutierrez-Rodriguez, Araceli
    Cruz-Fuentes, Carlos S.
    Genis-Mendoza, Alma D.
    Nicolini, Humberto
    BRAZILIAN JOURNAL OF PSYCHIATRY, 2023, 45 (02) : 137 - 145
  • [33] A CRISPR/Cas9 toolkit for multiplex genome editing in plants
    Xing, Hui-Li
    Dong, Li
    Wang, Zhi-Ping
    Zhang, Hai-Yan
    Han, Chun-Yan
    Liu, Bing
    Wang, Xue-Chen
    Chen, Qi-Jun
    BMC PLANT BIOLOGY, 2014, 14
  • [34] Inducible Genome Editing with Conditional CRISPR/Cas9 Mice
    Katigbak, Alexandra
    Robert, Francis
    Paquet, Marilene
    Pelletier, Jerry
    G3-GENES GENOMES GENETICS, 2018, 8 (05): : 1627 - 1635
  • [35] Analysis of microsatellite instability in CRISPR/Cas9 editing mice
    Huo, Xueyun
    Du, Yating
    Lu, Jing
    Guo, Meng
    Li, Zhenkun
    Zhang, Shuangyue
    Li, Xiaohong
    Chen, Zhenwen
    Du, Xiaoyan
    MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2017, 797 : 1 - 6
  • [36] Mechanisms of the Specificity of the CRISPR/Cas9 System in Genome Editing
    Kulishova, L. M.
    Vokhtantsev, I. P.
    Kim, D. V.
    Zharkov, D. O.
    MOLECULAR BIOLOGY, 2023, 57 (02) : 258 - 271
  • [37] Mechanisms of the Specificity of the CRISPR/Cas9 System in Genome Editing
    L. M. Kulishova
    I. P. Vokhtantsev
    D. V. Kim
    D. O. Zharkov
    Molecular Biology, 2023, 57 : 258 - 271
  • [38] Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9
    Sun, Yonghua
    Zhang, Bo
    Luo, Lingfei
    Shi, De-Li
    Wang, Han
    Cui, Zongbin
    Huang, Honghui
    Cao, Ying
    Shu, Xiaodong
    Zhang, Wenqing
    Zhou, Jianfeng
    Li, Yun
    Du, Jiulin
    Zhao, Qingshun
    Chen, Jun
    Zhong, Hanbing
    Zhong, Tao P.
    Li, Li
    Xiong, Jing-Wei
    Peng, Jinrong
    Xiao, Wuhan
    Zhang, Jian
    Yao, Jihua
    Yin, Zhan
    Mo, Xianming
    Peng, Gang
    Zhu, Jun
    Chen, Yan
    Zhou, Yong
    Liu, Dong
    Pan, Weijun
    Zhang, Yiyue
    Ruan, Hua
    Liu, Feng
    Zhu, Zuoyan
    Meng, Anming
    Sun, Yonghua
    Pan, Luyuan
    Wang, Houpeng
    Xie, Weixun
    He, Mudan
    Ye, Ding
    Li, Kuoyu
    Xiong, Feng
    Liu, Liyue
    Li, Linglu
    Zhang, Yun
    Zhang, Bo
    Liu, Da
    Cheng, Zhenchao
    GENOME RESEARCH, 2020, 30 (01) : 118 - 126
  • [39] In vivo and in vitro disease modeling with CRISPR/Cas9
    Kato, Tomoko
    Takada, Shuji
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2017, 16 (01) : 13 - 24
  • [40] Phenotypic Characterization and Comparison of Cystic Fibrosis Rat Models Generated Using CRISPR/Cas9 Gene Editing
    McCarron, Alexandra
    Cmielewski, Patricia
    Reyne, Nicole
    McIntyre, Chantelle
    Finnie, John
    Craig, Fiona
    Rout-Pitt, Nathan
    Delhove, Juliette
    Schjenken, John E.
    Chan, Hon Y.
    Boog, Bernadette
    Knight, Emma
    Gilmore, Rodney C.
    O'Neal, Wanda K.
    Boucher, Richard C.
    Parsons, David
    Donnelley, Martin
    AMERICAN JOURNAL OF PATHOLOGY, 2020, 190 (05) : 977 - 993