decreasing function along trajectories;
stopping time;
nearly optimal policies;
Holder's inequality;
simultaneous Doeblin condition;
recurrent state;
D O I:
10.1214/105051604000000585
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This work concerns controlled Markov chains with finite state and action spaces. The transition law satisfies the simultaneous Doeblin condition, and the performance of a control policy is measured by the (long-run) risk-sensitive average cost criterion associated to a positive, but otherwise arbitrary, risk sensitivity coefficient. Within this context, the optimal risk-sensitive average cost is characterized via a minimization problem in a finite-dimensional Euclidean space.