Apparatus for the measurement of electrical resistivity, Seebeck coefficient, and thermal conductivity of thermoelectric materials between 300 K and 12 K

被引:39
作者
Martin, Joshua [1 ,2 ]
Nolas, George S. [2 ]
机构
[1] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[2] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
关键词
Electric conductivity - Routers - Seebeck coefficient - Thermal conductivity - Thermoelectric equipment - Waste heat utilization - Uncertainty analysis - Probes;
D O I
10.1063/1.4939555
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We have developed a custom apparatus for the consecutive measurement of the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of materials between 300 K and 12 K. These three transport properties provide for a basic understanding of the thermal and electrical properties of materials. They are of fundamental importance in identifying and optimizing new materials for thermoelectric applications. Thermoelectric applications include waste heat recovery for automobile engines and industrial power generators, solid-state refrigeration, and remote power generation for sensors and space probes. The electrical resistivity is measured using a four-probe bipolar technique, the Seebeck coefficient is measured using the quasi-steady-state condition of the differential method in a 2-probe arrangement, and the thermal conductivity is measured using a longitudinal, multiple gradient steady-state technique. We describe the instrumentation and the measurement uncertainty associated with each transport property, each of which is presented with representative measurement comparisons using round robin samples and/or certified reference materials. Transport properties data from this apparatus have supported the identification, development, and phenomenological understanding of novel thermoelectric materials. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 20 条
[1]   Resistance and thermo-electric power of metallic germanium [J].
Bidwell, CC .
PHYSICAL REVIEW, 1922, 19 (05) :447-455
[2]  
Burkov A. T., 2005, THERMOELECTRICS HDB, P22
[3]  
Burns G. W., 1993, NATL I STANDARDS TEC, V175, P630
[4]   Facile Chemical Synthesis of Nanocrystalline Thermoelectric Alloys Based on Bi-Sb-Te-Se [J].
Datta, Anuja ;
Paul, Jagannath ;
Kar, Arik ;
Patra, Amitava ;
Sun, Zhengliang ;
Chen, Lidong ;
Martin, Joshua ;
Nolas, George S. .
CRYSTAL GROWTH & DESIGN, 2010, 10 (09) :3983-3989
[5]  
Hogan T. P., 2004, 100 JCGM, P231
[6]  
JCGM-Joint Committee of Guides in Metrology, 2008, EV MEAS DAT GUID EXP
[7]   Round-robin measurements of two candidate materials for a Seebeck coefficient Standard Reference Material™ [J].
Lowhorn, N. D. ;
Wong-Ng, W. ;
Zhang, W. ;
Lu, Z. Q. ;
Otani, M. ;
Thomas, E. ;
Green, M. ;
Tran, T. N. ;
Dilley, N. ;
Ghamaty, S. ;
Elsner, N. ;
Hogan, T. ;
Downey, A. D. ;
Jie, Q. ;
Li, Q. ;
Obara, H. ;
Sharp, J. ;
Caylor, C. ;
Venkatasubramanian, R. ;
Willigan, R. ;
Yang, J. ;
Martin, J. ;
Nolas, G. ;
Edwards, B. ;
Tritt, T. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 94 (02) :231-234
[8]   Thermoelectric properties of silicon-germanium type I clathrates [J].
Martin, J. ;
Nolas, G. S. ;
Wang, H. ;
Yang, J. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (10)
[9]   High temperature Seebeck coefficient metrology [J].
Martin, J. ;
Tritt, T. ;
Uher, C. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)
[10]   Error Modeling of Seebeck Coefficient Measurements Using Finite-Element Analysis [J].
Martin, Joshua .
JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (07) :1358-1364