Geometry of generalized Ricci-type solitons on a class of Riemannian manifolds

被引:3
|
作者
Kumara, H. Aruna [1 ]
Naik, Devaraja Mallesha [2 ]
Venkatesha, V. [1 ]
机构
[1] Kuvempu Univ, Dept Math, Shankaraghatta 577451, Karnataka, India
[2] CHRIST Deemed Univ, Dept Math, Bengaluru 560029, India
关键词
Ricci soliton; Generalized Ricci-type soliton; Concurrent vector field; Recurrent vector field;
D O I
10.1016/j.geomphys.2022.104506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the notion of generalized Ricci-type soliton is introduced and its geometrical relevance on Riemannian CR-manifold is established. Particularly, it is shown that a Riemannian CR-manifold is Einstein when its metric is a generalized Ricci-type soliton. Next, it has been proved that a Riemannian CR-manifold is Einstein-like, when its metric is a generalized gradient Ricci-type almost soliton (or generalized Ricci-type almost soliton for which the soliton vector field is collinear to the CR-vector field). Finally, we present an example of generalized Ricci-type solitons which illustrate our results.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS
    Ayar, Gulhan
    Yildirim, Mustafa
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 503 - 510
  • [42] Geometry of Ricci Solitons
    Huai-Dong CAO (Dedicated to the memory of Shiing-Shen Cherri)
    Chinese Annals of Mathematics, 2006, (02) : 121 - 142
  • [43] Geometry of Ricci solitons
    Cao, Huai-Dong
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) : 121 - 142
  • [44] Geometry of Ricci Solitons*
    Huai-Dong Cao
    Chinese Annals of Mathematics, Series B, 2006, 27 : 121 - 142
  • [45] Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
    Li, Yanlin
    Dey, Santu
    Pahan, Sampa
    Ali, Akram
    OPEN MATHEMATICS, 2022, 20 (01): : 574 - 589
  • [46] Ricci flows and Ricci solitons on η-Einstein manifolds
    Bhattacharyya, Arindam
    De, Tapan
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (02): : 14 - 21
  • [47] RICCI SOLITONS IN KENMOTSU MANIFOLDS
    Nagaraja, H. G.
    Premalatha, C. R.
    JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 3 (02): : 18 - 24
  • [48] η-Ricci solitons in ε-Kenmotsu manifolds
    Haseeb, Abdul
    De, Uday Chand
    JOURNAL OF GEOMETRY, 2019, 110 (02)
  • [49] η-RICCI SOLITONS IN LORENTZIAN α-MANIFOLDS
    Haseeb, Abdul
    Prasad, Rajendra
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (03): : 713 - 725
  • [50] Hypersurfaces of metallic Riemannian manifolds as k-almost Newton-Ricci solitons
    Choudhary, Majid Ali
    Siddiqi, Mohd. Danish
    Bahadir, Oguzhan
    Uddin, Siraj
    FILOMAT, 2023, 37 (07) : 2187 - 2197