Geometry of generalized Ricci-type solitons on a class of Riemannian manifolds

被引:3
|
作者
Kumara, H. Aruna [1 ]
Naik, Devaraja Mallesha [2 ]
Venkatesha, V. [1 ]
机构
[1] Kuvempu Univ, Dept Math, Shankaraghatta 577451, Karnataka, India
[2] CHRIST Deemed Univ, Dept Math, Bengaluru 560029, India
关键词
Ricci soliton; Generalized Ricci-type soliton; Concurrent vector field; Recurrent vector field;
D O I
10.1016/j.geomphys.2022.104506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the notion of generalized Ricci-type soliton is introduced and its geometrical relevance on Riemannian CR-manifold is established. Particularly, it is shown that a Riemannian CR-manifold is Einstein when its metric is a generalized Ricci-type soliton. Next, it has been proved that a Riemannian CR-manifold is Einstein-like, when its metric is a generalized gradient Ricci-type almost soliton (or generalized Ricci-type almost soliton for which the soliton vector field is collinear to the CR-vector field). Finally, we present an example of generalized Ricci-type solitons which illustrate our results.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Generalized Ricci Solitons on N(κ)-contact Metric Manifolds
    Mandal, Tarak
    Biswas, Urmila
    Sarkar, Avijit
    KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (02): : 313 - 324
  • [22] ON RICCI RIEMANNIAN MANIFOLDS
    Saha, S. K.
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (02): : 437 - 446
  • [23] Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds
    De, Uday Chand
    Sardar, Arpan
    De, Krishnendu
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 1078 - 1088
  • [24] Characterizations of Ricci–Bourguignon Almost Solitons on Pseudo-Riemannian Manifolds
    Dhriti Sundar Patra
    Akram Ali
    Fatemah Mofarreh
    Mediterranean Journal of Mathematics, 2022, 19
  • [25] ON RICCI-BOURGUIGNON h-ALMOST SOLITONS IN RIEMANNIAN MANIFOLDS
    Soylu, Yasemin
    JOURNAL OF SCIENCE AND ARTS, 2020, (03): : 673 - 680
  • [26] On *-Conformal Ricci Solitons on a Class of Almost Kenmotsu Manifolds
    Majhi, Pradip
    Dey, Dibakar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 781 - 790
  • [27] Positivity of simplicial volume for nonpositively curved manifolds with a Ricci-type curvature condition
    Connell, Chris
    Wang, Shi
    GROUPS GEOMETRY AND DYNAMICS, 2019, 13 (03) : 1007 - 1034
  • [28] Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons
    Haseeb, Abdul
    Bilal, Mohd
    Chaubey, Sudhakar K.
    Khan, Mohammad Nazrul Islam
    AXIOMS, 2022, 11 (09)
  • [29] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [30] A class of Riemannian manifolds that pinch when evolved by Ricci flow
    M. Simon
    manuscripta mathematica, 2000, 101 : 89 - 114