Geometry of generalized Ricci-type solitons on a class of Riemannian manifolds

被引:3
|
作者
Kumara, H. Aruna [1 ]
Naik, Devaraja Mallesha [2 ]
Venkatesha, V. [1 ]
机构
[1] Kuvempu Univ, Dept Math, Shankaraghatta 577451, Karnataka, India
[2] CHRIST Deemed Univ, Dept Math, Bengaluru 560029, India
关键词
Ricci soliton; Generalized Ricci-type soliton; Concurrent vector field; Recurrent vector field;
D O I
10.1016/j.geomphys.2022.104506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the notion of generalized Ricci-type soliton is introduced and its geometrical relevance on Riemannian CR-manifold is established. Particularly, it is shown that a Riemannian CR-manifold is Einstein when its metric is a generalized Ricci-type soliton. Next, it has been proved that a Riemannian CR-manifold is Einstein-like, when its metric is a generalized gradient Ricci-type almost soliton (or generalized Ricci-type almost soliton for which the soliton vector field is collinear to the CR-vector field). Finally, we present an example of generalized Ricci-type solitons which illustrate our results.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Ricci Solitons on Golden Riemannian Manifolds
    Savita Rani
    Ram Shankar Gupta
    Mediterranean Journal of Mathematics, 2023, 20
  • [2] Ricci Solitons on Golden Riemannian Manifolds
    Rani, Savita
    Gupta, Ram Shankar
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [3] Homogeneous symplectic manifolds with Ricci-type curvature
    Cahen, M
    Gutt, S
    Horowitz, J
    Rawnsley, J
    JOURNAL OF GEOMETRY AND PHYSICS, 2001, 38 (02) : 140 - 151
  • [4] Extrinsic Geometry of a Riemannian Manifold and Ricci Solitons
    Al-Dayel, Ibrahim
    Deshmukh, Sharief
    AXIOMS, 2025, 14 (02)
  • [5] Generalized Ricci solitons on Riemannian manifolds admitting concurrent-recurrent vector field
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    Venkatesha, V.
    JOURNAL OF ANALYSIS, 2022, 30 (03): : 1023 - 1031
  • [6] Generalized Ricci solitons on Riemannian manifolds admitting concurrent-recurrent vector field
    Devaraja Mallesha Naik
    H. Aruna Kumara
    V. Venkatesha
    The Journal of Analysis, 2022, 30 : 1023 - 1031
  • [7] Three-Dimensional Riemannian Manifolds and Ricci Solitons
    Chaubey, Sudhakar K.
    De, Uday Chand
    QUAESTIONES MATHEMATICAE, 2022, 45 (05) : 765 - 778
  • [8] Gravitational solitons and complete Ricci flat Riemannian manifolds of infinite topological type
    Khuri, Marcus
    Reiris, Martin
    Weinstein, Gilbert
    Yamada, Sumio
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (04) : 1895 - 1921
  • [9] Generalized Ricci solitons on contact metric manifolds
    Gopal Ghosh
    Uday Chand De
    Afrika Matematika, 2022, 33
  • [10] Generalized Ricci solitons on contact metric manifolds
    Ghosh, Gopal
    De, Uday Chand
    AFRIKA MATEMATIKA, 2022, 33 (02)