Prediction-Based Scale Adaptive Correlation Filter Tracker

被引:0
作者
Zhao, Zuopeng [1 ,2 ]
Zhang, Hongda [1 ,2 ]
Liu, Yi [1 ,2 ]
Zhou, Nana [1 ,2 ]
Zheng, Han [1 ,2 ]
Sun, Shanyi [1 ,2 ]
Li, Xiaoman [1 ,2 ]
Xia, Sili [1 ,2 ]
机构
[1] CUMT, Sch Comp Sci & Technol, Xuzhou, Jiangsu, Peoples R China
[2] Minstry Educ Peoples Republ China, Mine Digitizat Engn Res Ctr, Beijing, Peoples R China
关键词
visual tracking; correlation filter; scale prediction; model update; fast motion; VISUAL TRACKING;
D O I
10.1587/transinf.2019EDL8101
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Although correlation filter-based trackers have demonstrated excellent performance for visual object tracking, there remain several challenges to be addressed. In this work, we propose a novel tracker based on the correlation filter framework. Traditional trackers face difficulty in accurately adapting to changes in the scale of the target when the target moves quickly. To address this, we suggest a scale adaptive scheme based on prediction scales. We also incorporate a speed-based adaptive model update method to further improve overall tracking performance. Experiments with samples from the OTB100 and KITTI datasets demonstrate that our method outperforms existing state-of-the-art tracking algorithms in fast motion scenes.
引用
收藏
页码:2267 / 2271
页数:5
相关论文
共 15 条
[1]   Adaptive Learning Rate for Visual Tracking using Correlation Filters [J].
Asha, C. S. ;
Narasimhadhan, A. V. .
TWELFTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2016 / TWELFTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2016 / TWELFTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2016, 2016, 89 :614-622
[2]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[3]   Visual Tracking via Adaptive Spatially-Regularized Correlation Filters [J].
Dai, Kenan ;
Wang, Dong ;
Lu, Huchuan ;
Sun, Chong ;
Li, Jianhua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4665-4674
[4]   ECO: Efficient Convolution Operators for Tracking [J].
Danelljan, Martin ;
Bhat, Goutam ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6931-6939
[5]   Discriminative Scale Space Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (08) :1561-1575
[6]   Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking [J].
Danelljan, Martin ;
Robinson, Andreas ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 :472-488
[7]   Learning Spatially Regularized Correlation Filters for Visual Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4310-4318
[8]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[9]   High-Speed Tracking with Kernelized Correlation Filters [J].
Henriques, Joao F. ;
Caseiro, Rui ;
Martins, Pedro ;
Batista, Jorge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) :583-596
[10]   Exploiting the Circulant Structure of Tracking-by-Detection with Kernels [J].
Henriques, Joao F. ;
Caseiro, Rui ;
Martins, Pedro ;
Batista, Jorge .
COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 :702-715