Ion-Induced Mesoplasma Formation and Thermal Destruction in 4H-SiC Power MOSFET Devices

被引:37
作者
McPherson, Joseph A. [1 ]
Hitchcock, Collin W. [1 ]
Paul Chow, T. [1 ]
Ji, Wei [1 ]
Woodworth, Andrew A. [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
关键词
Thermal conductivity; Silicon carbide; Ions; Conductivity; Semiconductor process modeling; MOSFET; Buffer layers; Heavy ions; mesoplasma; silicon carbide power devices; single-event burnout (SEB); single-event effects (SEEs); SCHOTTKY-BARRIER DIODES;
D O I
10.1109/TNS.2021.3068196
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Both experiments and simulations have shown that single-event burnout (SEB), a catastrophic event, occurs at less than half of the rated blocking voltage in commercial 4H-SiC power devices under a heavy-ion strike. The failure was shown to be due to significant impact ionization near the epi/substrate interface. Adding a buffer layer between the drift epi and substrate layers reduces the impact ionization effect and changes the thermal failure location. In this article, the SEB phenomenon in a 4H-SiC power MOSFET utilizing a buffer layer is investigated. Heavy-ion transport and 3-D electro-thermal transient simulations were performed to study the device response to a heavy-ion strike. In examining the time evolution of electric field profile, charge carrier dynamics, and thermal heat transfer, it is determined that the failure mode for this design is the location shift of the mesoplasma (or hot spot) to within the drift epi region, away from the high field area. A sensitivity analysis was conducted to identify the dominant electrical or thermal factors contributing to device failure due to second breakdown. From these simulations, it is found that the semiconductor thermal conductivity is the primary material parameter that influences the mesoplasma formation.
引用
收藏
页码:651 / 658
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 2014, SENTAURUSTM DEV US G
[2]   Ion-Induced Energy Pulse Mechanism for Single-Event Burnout in High-Voltage SiC Power MOSFETs and Junction Barrier Schottky Diodes [J].
Ball, D. R. ;
Hutson, J. M. ;
Javanainen, A. ;
Lauenstein, J. -M. ;
Galloway, K. F. ;
Johnson, R. A. ;
Alles, M. L. ;
Sternberg, A. L. ;
Sierawski, B. D. ;
Witulski, A. F. ;
Reed, R. A. ;
Schrimpf, R. D. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (01) :22-28
[3]  
Beatty B., 1976, 1976 IEEE Power Electronics Specialists Conference, P247, DOI 10.1109/PESC.1976.7072924
[4]  
Blackburn D. L., 1980, International Electron Devices Meeting. Technical Digest, P297
[5]  
Ghandhi S.K., 1977, Semiconductor Power Devices
[6]   SECOND BREAKDOWN - HOT SPOTS OR HOT CYLINDERS [J].
KRISHNA, S ;
GRAY, P .
PROCEEDINGS OF THE IEEE, 1974, 62 (08) :1182-1183
[7]   Anomalous charge collection in Silicon Carbide Schottky Barrier Diodes and resulting permanent damage and single-event burnout [J].
Kuboyama, Satoshi ;
Kamezawa, Chihiro ;
Ikeda, Naomi ;
Hirao, Toshio ;
Ohyama, Hidenori .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (06) :3343-3348
[8]   Thermal Runaway in SiC Schottky Barrier Diodes Caused by Heavy Ions [J].
Kuboyama, Satoshi ;
Mizuta, Eiichi ;
Nakada, Yuki ;
Shindou, Hiroyuki ;
Michez, Alain ;
Boch, Jerome ;
Saigne, Frederic ;
Touboul, Antoine .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (07) :1688-1693
[9]  
Lades M., 2000, MODELING SIMULATION
[10]  
Lauenstein J.-M., GSFCEDAATN39790 NASA