Design, construction and operation of a solar powered ammonia-water absorption refrigeration system in Saudi Arabia

被引:53
作者
Said, S. A. M. [1 ]
Spindler, K. [2 ]
El-Shaarawi, M. A. [1 ]
Siddiqui, M. U. [3 ]
Schmid, F. [2 ]
Bierling, B. [2 ]
Khan, M. M. A. [1 ]
机构
[1] King Fahd Univ Petr & Minerals, CoRE RE, Dhahran 31261, Saudi Arabia
[2] Univ Stuttgart, Inst Thermodynam & Thermal Engn ITW, D-70569 Stuttgart, Germany
[3] Univ Dammam, Coll Engn, POB 1982, Dammam 31451, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID | 2016年 / 62卷
关键词
Ammonia-water (NH3-H2O); Absorption chiller; Refrigeration system; Solar energy; Ice storage; Evacuated tubular solar collectors; LOW-GRADE HEAT; COOLING SYSTEM; TECHNOLOGY; PREDICTION; OPTIONS;
D O I
10.1016/j.ijrefrig.2015.10.026
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study presents an experimental investigation of a solar thermal powered ammonia-water absorption refrigeration system. The focus of this study lies on the design of the components of the absorption chiller, the ice storages and the solar collector field as well as the integration of the data acquisition and control unit. An ammonia-water (NH3/H2O) absorption chiller was developed in the laboratory of the Institute of Thermodynamics & Thermal Engineering (ITW) at the University of Stuttgart (Germany). A demonstration plant was built in the laboratory of the CoRE-RE at King Fahd University of Petroleum & Minerals (KFUPM - Saudi Arabia). The whole system was tested successfully. The results of the experiments indicated a chiller coefficient of performance (COP) of 0.69 and a cooling capacity of 10.1 kW at 114/23/-2 (degrees C) representing the temperatures of the generator inlet, the condenser/absorber inlet and the evaporator outlet respectively. Even at 140/45/-4 (degrees C), the chiller was running with a cooling capacity of 4.5 kW and a COP of 0.42. (C) 2016 Elsevier Ltd and International Institute of Refrigeration. All rights reserved.
引用
收藏
页码:222 / 231
页数:10
相关论文
共 25 条
[1]   A review of thermodynamics and heat transfer in solar refrigeration system [J].
Afshar, O. ;
Saidur, R. ;
Hasanuzzaman, M. ;
Jameel, M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (08) :5639-5648
[2]   Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store [J].
Agyenim, Francis ;
Knight, Ian ;
Rhodes, Michael .
SOLAR ENERGY, 2010, 84 (05) :735-744
[3]  
Arias-Varela HD, 2000, THERMODYNAMIC DESIGN, P22370
[4]   Solar air conditioning in Europe - an overview [J].
Balaras, Constantinos A. ;
Grossman, Gershon ;
Henning, Hans-Martin ;
Infante Ferreira, Carlos A. ;
Podesser, Erich ;
Wang, Lei ;
Wiemken, Edo .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (02) :299-314
[5]   Investigation of a solar cooling installation in Tunisia [J].
Balghouthi, M. ;
Chahbani, M. H. ;
Guizani, A. .
APPLIED ENERGY, 2012, 98 :138-148
[6]   Solar absorption cooling plant in Seville [J].
Bermejo, Pablo ;
Javier Pino, Francisco ;
Rosa, Felipe .
SOLAR ENERGY, 2010, 84 (08) :1503-1512
[7]   Development of a 5 kW cooling capacity ammonia-water absorption chiller for solar cooling applications [J].
Boudehenn, Francois ;
Demasles, Helene ;
Wyttenbach, Joel ;
Jobard, Xavier ;
Cheze, David ;
Papillon, Philippe .
1ST INTERNATIONAL CONFERENCE ON SOLAR HEATING AND COOLING FOR BUILDINGS AND INDUSTRY (SHC 2012), 2012, 30 :35-43
[8]  
Brendel T., 2010, DEV SMALL SCAL AMM W
[9]   Review of solar cooling methods and thermal storage options [J].
Chidambaram, L. A. ;
Ramana, A. S. ;
Kamaraj, G. ;
Velraj, R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (06) :3220-3228
[10]   Theoretical and practical analysis of an integrated solar hot water-powered absorption cooling system [J].
Darkwa, J. ;
Fraser, S. ;
Chow, D. H. C. .
ENERGY, 2012, 39 (01) :395-402