The structure of stable minimal surfaces near a singularity

被引:1
作者
Meeks, William H., II [1 ]
机构
[1] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
关键词
D O I
10.1307/mmj/1177681990
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:155 / 161
页数:7
相关论文
共 10 条
[1]  
[Anonymous], 1983, SEMINAR MINIMAL SUBM
[2]  
CODING TH, 2005, SPACE EMBEDDED MINIM
[3]   STABLE COMPLETE MINIMAL SURFACES IN R3 ARE PLANES [J].
DOCARMO, M ;
PENG, CK .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (06) :903-906
[4]   THE STRUCTURE OF COMPLETE STABLE MINIMAL-SURFACES IN 3-MANIFOLDS OF NONNEGATIVE SCALAR CURVATURE [J].
FISCHERCOLBRIE, D ;
SCHOEN, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (02) :199-211
[5]  
GULLIVER R, 1986, P SYMP PURE MATH, V44, P213
[6]  
MEEKS III W. H., EMBEDDED MINIMAL SUR
[7]   The geometry of minimal surfaces of finite genus II;: nonexistence of one limit end examples [J].
Meeks, WH ;
Pérez, J ;
Ros, A .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :323-341
[8]   The minimal lamination closure theorem [J].
Meeks, William H., III ;
Rosenberg, Harold .
DUKE MATHEMATICAL JOURNAL, 2006, 133 (03) :467-497
[9]  
POGORELOV AV, 1981, DOKL AKAD NAUK SSSR+, V260, P293
[10]  
Ros A, 2006, J DIFFER GEOM, V74, P69