Quantum simulation of a topological Mott insulator with Rydberg atoms in a Lieb lattice

被引:46
作者
Dauphin, A. [1 ,2 ,3 ]
Mueller, M. [2 ,4 ]
Martin-Delgado, M. A. [2 ]
机构
[1] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, 231 Campus Plaine, B-1050 Brussels, Belgium
[2] Univ Complutense, Dept Fis Teor 1, E-28040 Madrid, Spain
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[4] Swansea Univ, Dept Phys, Singleton Pk, Swansea SA2 8PP, W Glam, Wales
基金
欧盟地平线“2020”;
关键词
DIRAC POINTS; REALIZATION; MODEL;
D O I
10.1103/PhysRevA.93.043611
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a realistic scheme to quantum simulate the so-far experimentally unobserved topological Mott insulator phase-an interaction-driven topological insulator-using cold atoms in an optical Lieb lattice. To this end, we study a system of spinless fermions in a Lieb lattice, exhibiting repulsive nearest-and next-to-nearest-neighbor interactions and derive the associated zero-temperature phase diagram within mean-field approximation. In particular, we analyze how the interactions can dynamically generate a charge density wave ordered, a nematic, and a topologically nontrivial quantum anomalous Hall phase. We characterize the topology of the different phases by the Chern number and discuss the possibility of phase coexistence. Based on the identified phases, we propose a realistic implementation of this model using cold Rydberg-dressed atoms in an optical lattice. The scheme, which allows one to access, in particular, the topological Mott insulator phase, robustly and independently of its exact position in parameter space, merely requires global, always-on off-resonant laser coupling to Rydberg states and is feasible with state-of-the-art experimental techniques that have already been demonstrated in the laboratory.
引用
收藏
页数:8
相关论文
共 71 条
[1]   Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms [J].
Aidelsburger, M. ;
Lohse, M. ;
Schweizer, C. ;
Atala, M. ;
Barreiro, J. T. ;
Nascimbene, S. ;
Cooper, N. R. ;
Bloch, I. ;
Goldman, N. .
NATURE PHYSICS, 2015, 11 (02) :162-166
[2]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[3]   Seeing Topological Order in Time-of-Flight Measurements [J].
Alba, E. ;
Fernandez-Gonzalvo, X. ;
Mur-Petit, J. ;
Pachos, J. K. ;
Garcia-Ripoll, J. J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (23)
[4]  
[Anonymous], 1994, RYDBERG ATOMS, DOI DOI 10.1017/CBO9780511524530.021
[5]   Flat bands, Dirac cones, and atom dynamics in an optical lattice [J].
Apaja, V. ;
Hyrkas, M. ;
Manninen, M. .
PHYSICAL REVIEW A, 2010, 82 (04)
[6]   Rydberg dressing: understanding of collective many-body effects and implications for experiments [J].
Balewski, J. B. ;
Krupp, A. T. ;
Gaj, A. ;
Hofferberth, S. ;
Loew, R. ;
Pfau, T. .
NEW JOURNAL OF PHYSICS, 2014, 16
[7]  
Bernevig B. A., 2013, Topological Insulators and Topological Superconductors
[8]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[9]  
Bruus H., 2004, Many-body quantum theory in condensed matter physics: an introduction
[10]   Phases of correlated spinless fermions on the honeycomb lattice [J].
Daghofer, Maria ;
Hohenadler, Martin .
PHYSICAL REVIEW B, 2014, 89 (03)