Restricted k-color partitions, II

被引:5
作者
Keith, William J. [1 ]
机构
[1] Michigan Tech Univ, Dept Math Sci, 1400 Townsend Dr, Houghton, MI 49931 USA
关键词
Partitions; colored partitions; overpartitions; congruences;
D O I
10.1142/S1793042120400151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider (k, j)-colored partitions, partitions in which k colors exist but at most j colors may be chosen per size of part. In particular these generalize overpartitions. Advancing previous work, we find new congruences, including in previously unexplored cases where k and j are not coprime, as well as some noncongruences. As a useful aside, we give the apparently new generating function for the number of partitions in the N x M box with a given number of part sizes, and extend to multiple colors a conjecture of Dousse and Kim on unimodality in overpartitions.
引用
收藏
页码:591 / 601
页数:11
相关论文
共 11 条
[1]  
Andrews G., 1999, Ann. Comb, V3, P115, DOI DOI 10.1007/BF01608779
[2]  
Andrews GE, 2008, DEV MATH, V17, P1, DOI 10.1007/978-0-387-78510-3_1
[3]  
Berndt B.C., 2012, DEV MATH, V23, P13, DOI 10.1007/978-1-4614-0028-8_2
[4]   Overpartitions [J].
Corteel, S ;
Lovejoy, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1623-1635
[5]   An overpartition analogue of q-binomial coefficients, II: Combinatorial proofs and (q, t)-log concavity [J].
Dousse, Jehanne ;
Kim, Byungchan .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 158 :228-253
[6]  
Hirschhorn M. D., 2005, Integers, V5
[7]   Restricted k-color partitions [J].
Keith, William J. .
RAMANUJAN JOURNAL, 2016, 40 (01) :71-92
[8]  
MacMahon P.A, 1919, P LOND MATH SOC, V1, P75
[9]   A note on the partitions involving parts of k different magnitudes [J].
Merca, Mircea .
JOURNAL OF NUMBER THEORY, 2016, 162 :23-34
[10]  
Smoot N, J SYMB COMPUT