Segmentation of human brain using structural MRI

被引:27
|
作者
Helms, Gunther [1 ]
机构
[1] Univ Lund Hosp, Med Radiat Phys, Barngatan 2B, S-22185 Lund, Sweden
基金
瑞典研究理事会;
关键词
Brain; Segmentation; MRI; Morphometry; Cortical thickness; WHITE-MATTER LESIONS; MULTIPLE-SCLEROSIS; ALZHEIMERS-DISEASE; AUTOMATIC SEGMENTATION; UNIFIED SEGMENTATION; TISSUE SEGMENTATION; IMAGE SEGMENTATION; CORTICAL THICKNESS; RELAXATION RATES; CEREBRAL-CORTEX;
D O I
10.1007/s10334-015-0518-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Segmentation of human brain using structural MRI is a key step of processing in imaging neuroscience. The methods have undergone a rapid development in the past two decades and are now widely available. This non-technical review aims at providing an overview and basic understanding of the most common software. Starting with the basis of structural MRI contrast in brain and imaging protocols, the concepts of voxel-based and surface-based segmentation are discussed. Special emphasis is given to the typical contrast features and morphological constraints of cortical and sub-cortical grey matter. In addition to the use for voxel-based morphometry, basic applications in quantitative MRI, cortical thickness estimations, and atrophy measurements as well as assignment of cortical regions and deep brain nuclei are briefly discussed. Finally, some fields for clinical applications are given.
引用
收藏
页码:111 / 124
页数:14
相关论文
共 50 条
  • [1] Segmentation of human brain using structural MRI
    Gunther Helms
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2016, 29 : 111 - 124
  • [2] Reproducibility of Brain MRI Segmentation Algorithms: Empirical Comparison of Local MAP PSTAPLE, FreeSurfer, and FSL-FIRST
    Velasco-Annis, Clemente
    Akhondi-Asl, Alireza
    Stamm, Aymeric
    Warfield, Simon K.
    JOURNAL OF NEUROIMAGING, 2018, 28 (02) : 162 - 172
  • [3] Estimation of the Total Brain Volume Using Semi-Automatic Segmentation and Stereology of the Newborns' Brain MRI
    Ertekin, Tolga
    Acer, Niyazi
    Icer, Semra
    Yildirim, Afra
    NEUROQUANTOLOGY, 2013, 11 (02) : 181 - 188
  • [4] Revealing modular architecture of human brain structural networks by using cortical thickness from MRI
    Chen, Zhang J.
    He, Yong
    Rosa-Neto, Pedro
    Germann, Jurgen
    Evans, Alan C.
    CEREBRAL CORTEX, 2008, 18 (10) : 2374 - 2381
  • [5] Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder
    Atlason, Hans E.
    Love, Askell
    Sigurdsson, Sigurdur
    Gudnason, Vilmundur
    Ellingsen, Lotta M.
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [6] Automated claustrum segmentation in human brain MRI using deep learning
    Li, Hongwei
    Menegaux, Aurore
    Schmitz-Koep, Benita
    Neubauer, Antonia
    Baeuerlein, Felix J. B.
    Shit, Suprosanna
    Sorg, Christian
    Menze, Bjoern
    Hedderich, Dennis
    HUMAN BRAIN MAPPING, 2021, 42 (18) : 5862 - 5872
  • [7] SEGMA: An Automatic SEGMentation Approach for Human Brain MRI Using Sliding Window and Random Forests
    Serag, Ahmed
    Wilkinson, Alastair G.
    Telford, Emma J.
    Pataky, Rozalia
    Sparrow, Sarah A.
    Anblagan, Devasuda
    Macnaught, Gillian
    Semple, Scott I.
    Boardman, James P.
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [8] MRI-based structural covariance network in early human brain development
    Duan, Dingna
    Wen, Dong
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [9] Integration of segmentation techniques to detect cyst in human brain using MRI sequences
    Sheshadri, H. S.
    Akshath, M. J.
    2015 INTERNATIONAL CONFERENCE ON EMERGING RESEARCH IN ELECTRONICS, COMPUTER SCIENCE AND TECHNOLOGY (ICERECT), 2015, : 204 - 208
  • [10] An MRI digital brain phantom for validation of segmentation methods
    Alfano, Bruno
    Comerci, Marco
    Larobina, Michele
    Prinster, Anna
    Hornak, Joseph P.
    Selvan, S. Easter
    Amato, Umberto
    Quarantelli, Mario
    Tedeschi, Gioacchino
    Brunetti, Arturo
    Salvatore, Marco
    MEDICAL IMAGE ANALYSIS, 2011, 15 (03) : 329 - 339