Singular left-definite Sturm-Liouville problems

被引:24
作者
Kong, Q [1 ]
Wu, H [1 ]
Zettl, A [1 ]
机构
[1] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
关键词
singular problems; left-definite; eigenvalues; eigenfunctions; eigenvalue inequalities;
D O I
10.1016/j.jde.2004.07.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study singular left-definite Sturm-Liouville problems with an indefinite weight function. The existence of eigenvalues is established based on the existence of eigenvalues of corresponding right-definite problems. Furthermore, for each singular left-definite problem with limit-circle non-oscillatory endpoints we construct a regular left-definite problem with the same eigenvalues and use it to obtain properties of eigenvalues and eigenfunctions. Inequalities among eigenvalues recently established for regular left-definite problems are extended to the singular case. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [31] Inequalities among eigenvalues of Sturm-Liouville problems
    Eastham, MSP
    Kong, Q
    Wu, H
    Zettl, A
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 3 (01) : 25 - 43
  • [32] Adomian Decomposition Method for Computing Eigen-Values of Singular Sturm-Liouville Problems
    Singh, Neelima
    Kumar, Manoj
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2013, 36 (03): : 311 - 318
  • [33] The Modified Parseval Equality of Sturm-Liouville Problems with Transmission Conditions
    Bai, Mudan
    Sun, Jiong
    Yao, Siqin
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [34] Heat equation for Sturm-Liouville operator with singular propagation and potential
    Ruzhansky, Michael
    Yeskermessuly, Alibek
    JOURNAL OF APPLIED ANALYSIS, 2024,
  • [35] Trace of a difference of singular Sturm-Liouville operators with a potential containing Dirac δ-functions
    Pechentsov, A. S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2013, 20 (02) : 230 - 238
  • [36] The dual eigenvalue problems of the conformable fractional Sturm-Liouville problems
    Cheng, Yan-Hsiou
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [37] Bernstein collocation technique for a class of Sturm-Liouville problems
    Farzana, Humaira
    Bhowmik, Samir Kumar
    Alim, M. A.
    HELIYON, 2024, 10 (07)
  • [38] A Reliable Method for Solving Fractional Sturm-Liouville Problems
    Khashshan, M. M.
    Syam, Muhammed I.
    Al Mokhmari, Ahlam
    MATHEMATICS, 2018, 6 (10)
  • [39] Eigenvalues of fractional Sturm-Liouville problems by successive method
    Maralani, Elnaz Massah
    Saei, Farhad Dastmalchi
    Akbarfam, Ali Asghar Jodayree
    Ghanbari, Kazem
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (04): : 1163 - 1175
  • [40] RIESZ BASES GENERATED BY THE SPECTRA OF STURM-LIOUVILLE PROBLEMS
    Harutyunyan, Tigran
    Pahlevanyan, Avetik
    Srapionyan, Anna
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,