Singular left-definite Sturm-Liouville problems

被引:24
作者
Kong, Q [1 ]
Wu, H [1 ]
Zettl, A [1 ]
机构
[1] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
关键词
singular problems; left-definite; eigenvalues; eigenfunctions; eigenvalue inequalities;
D O I
10.1016/j.jde.2004.07.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study singular left-definite Sturm-Liouville problems with an indefinite weight function. The existence of eigenvalues is established based on the existence of eigenvalues of corresponding right-definite problems. Furthermore, for each singular left-definite problem with limit-circle non-oscillatory endpoints we construct a regular left-definite problem with the same eigenvalues and use it to obtain properties of eigenvalues and eigenfunctions. Inequalities among eigenvalues recently established for regular left-definite problems are extended to the singular case. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [1] Left-definite Sturm-Liouville problems
    Kong, Q
    Wu, H
    Zettl, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 177 (01) : 1 - 26
  • [2] Floquet theory for left-definite Sturm-Liouville problems
    Marletta, M
    Zettl, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (02) : 477 - 482
  • [3] Eigenvalue estimates for singular left-definite Sturm-Liouville operators
    Behrndt, Jussi
    Moews, Roland
    Trunk, Carsten
    JOURNAL OF SPECTRAL THEORY, 2011, 1 (03) : 327 - 347
  • [4] Oscillation problem of Left-Definite Sturm-Liouville Problems with coupled BCs
    Zhang, Yanxia
    Zhang, Xuefeng
    Wang, Zhongzhi
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (18) : 9709 - 9716
  • [5] Left-definite boundary conditions of Sturm-Liouville problems when the interval shrinks to a point
    Gao Yun-lan
    Wang Zhong
    Wu Hong-you
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (01) : 29 - 37
  • [6] NON-DEFINITE STURM-LIOUVILLE PROBLEMS FOR THE p-LAPLACIAN
    Binding, Paul A.
    Browne, Patrick J.
    Watson, Bruce A.
    OPERATORS AND MATRICES, 2011, 5 (04): : 649 - 664
  • [7] COMPUTING STRUCTURED SINGULAR VALUES FOR STURM-LIOUVILLE PROBLEMS
    Rehman, Mutti-Ur
    Abbas, Ghulam
    Mehmood, Arshad
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (05): : 879 - 891
  • [8] Spectrum of discrete left definite Sturm-Liouville problems with eigenparameter-dependent boundary conditions
    Gao, Chenghua
    Ma, Ruyun
    Zhang, Fei
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (09) : 1905 - 1923
  • [9] On non-definite Sturm-Liouville problems with two turning points
    Kikonko, Mervis
    Mingarelli, Angelo B.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9508 - 9515
  • [10] Regular approximation of singular Sturm-Liouville problems with transmission conditions
    Zhang, Maozhu
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 511 - 520