Machine Learning and Deep Learning Methods for Cybersecurity

被引:589
作者
Xin, Yang [1 ,2 ]
Kong, Lingshuang [3 ]
Liu, Zhi [2 ,3 ]
Chen, Yuling [2 ]
Li, Yanmiao [1 ]
Zhu, Hongliang [1 ]
Gao, Mingcheng [1 ]
Hou, Haixia [1 ]
Wang, Chunhua [4 ]
机构
[1] Beijing Univ Posts & Telecommun, Ctr Informat Secur, Beijing 100876, Peoples R China
[2] Guizhou Univ, Guizhou Prov Key Lab Publ Big Data, Guiyang 550025, Guizhou, Peoples R China
[3] Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Shandong, Peoples R China
[4] China Changfeng Sci Technology Ind Grp Corp, Beijing 100854, Peoples R China
基金
国家重点研发计划;
关键词
Cybersecurity; intrusion detection; deep learning; machine learning; INTRUSION; SYSTEMS; MODEL;
D O I
10.1109/ACCESS.2018.2836950
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of the Internet, cyber-attacks are changing rapidly and the cyber security situation is not optimistic. This survey report describes key literature surveys on machine learning (ML) and deep learning (DL) methods for network analysis of intrusion detection and provides a brief tutorial description of each ML/DL method. Papers representing each method were indexed, read, and summarized based on their temporal or thermal correlations. Because data are so important in ML/DL methods, we describe some of the commonly used network datasets used in ML/DL, discuss the challenges of using ML/DL for cybersecurity and provide suggestions for research directions.
引用
收藏
页码:35365 / 35381
页数:17
相关论文
共 78 条
[31]  
Krishnan R., 2016, International Journal of Pharmacy and Technology, V8, P23157
[32]   A survey of deep learning-based network anomaly detection [J].
Kwon, Donghwoon ;
Kim, Hyunjoo ;
Kim, Jinoh ;
Suh, Sang C. ;
Kim, Ikkyun ;
Kim, Kuinam J. .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 1) :949-961
[33]  
Lakhina S., 2010, INT J ENG SCI TECHNO, V2, P3175
[34]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[35]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[36]  
Lippmann R.P., 2000, P DARPA INF SURV C E, V2, P12, DOI DOI 10.1109/DISCEX.2000.821506
[37]   Machine Learning [J].
Louridas, Panos ;
Ebert, Christof .
IEEE SOFTWARE, 2016, 33 (05) :110-115
[38]  
Malikov A., 2017, Critical Issues and Challenges in Islamic Economics and Finance Development, P1
[39]  
Meena G, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS AND ELECTRONICS (COMPTELIX), P553, DOI 10.1109/COMPTELIX.2017.8004032
[40]   Design of intelligent KNN-based alarm filter using knowledge-based alert verification in intrusion detection [J].
Meng, Weizhi ;
Li, Wenjuan ;
Kwok, Lam-For .
SECURITY AND COMMUNICATION NETWORKS, 2015, 8 (18) :3883-3895