Machine Learning and Deep Learning Methods for Cybersecurity

被引:589
作者
Xin, Yang [1 ,2 ]
Kong, Lingshuang [3 ]
Liu, Zhi [2 ,3 ]
Chen, Yuling [2 ]
Li, Yanmiao [1 ]
Zhu, Hongliang [1 ]
Gao, Mingcheng [1 ]
Hou, Haixia [1 ]
Wang, Chunhua [4 ]
机构
[1] Beijing Univ Posts & Telecommun, Ctr Informat Secur, Beijing 100876, Peoples R China
[2] Guizhou Univ, Guizhou Prov Key Lab Publ Big Data, Guiyang 550025, Guizhou, Peoples R China
[3] Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Shandong, Peoples R China
[4] China Changfeng Sci Technology Ind Grp Corp, Beijing 100854, Peoples R China
基金
国家重点研发计划;
关键词
Cybersecurity; intrusion detection; deep learning; machine learning; INTRUSION; SYSTEMS; MODEL;
D O I
10.1109/ACCESS.2018.2836950
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of the Internet, cyber-attacks are changing rapidly and the cyber security situation is not optimistic. This survey report describes key literature surveys on machine learning (ML) and deep learning (DL) methods for network analysis of intrusion detection and provides a brief tutorial description of each ML/DL method. Papers representing each method were indexed, read, and summarized based on their temporal or thermal correlations. Because data are so important in ML/DL methods, we describe some of the commonly used network datasets used in ML/DL, discuss the challenges of using ML/DL for cybersecurity and provide suggestions for research directions.
引用
收藏
页码:35365 / 35381
页数:17
相关论文
共 78 条
[11]   Feature selection and classification in multiple class datasets: An application to KDD Cup 99 dataset [J].
Bolon-Canedo, V. ;
Sanchez-Marono, N. ;
Alonso-Betanzos, A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (05) :5947-5957
[12]  
Bontemps L., 2017, P INT C FUT DAT SEC, P141
[13]   A Hybrid System of Deep Learning and Learning Classifier System for Database Intrusion Detection [J].
Bu, Seok-Jun ;
Cho, Sung-Bae .
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2017, 2017, 10334 :615-625
[14]   A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection [J].
Buczak, Anna L. ;
Guven, Erhan .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2016, 18 (02) :1153-1176
[15]  
Chandrasekhar A. M., 2014, 2014 International Conference on Communications and Signal Processing (ICCSP), P672, DOI 10.1109/ICCSP.2014.6949927
[16]   A GPU deep learning metaheuristic based model for time series forecasting [J].
Coelho, Igor M. ;
Coelho, Vitor N. ;
Luz, Eduardo J. da S. ;
Ochi, Luiz S. ;
Guimaraes, Frederico G. ;
Rios, Eyder .
APPLIED ENERGY, 2017, 201 :412-418
[17]  
Dada E, 2017, Proc. Fac. Seminar Series, P14
[18]   Deep Learning: Methods and Applications [J].
Deng, Li ;
Yu, Dong .
FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2013, 7 (3-4) :I-387
[19]  
Ding YX, 2016, IEEE IJCNN, P3901, DOI 10.1109/IJCNN.2016.7727705
[20]  
Ergen T., 2017, IEEE T NEUR NET LEAR, V4, P1