Materials challenges and opportunities for quantum computing hardware

被引:392
作者
de Leon, Nathalie P. [1 ]
Itoh, Kohei M. [2 ]
Kim, Dohun [3 ,4 ]
Mehta, Karan K. [5 ]
Northup, Tracy E. [6 ]
Paik, Hanhee [7 ]
Palmer, B. S. [8 ,9 ]
Samarth, N. [10 ]
Sangtawesin, Sorawis [11 ,13 ]
Steuerman, D. W. [12 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[2] Keio Univ, Sch Fundamental Sci & Technol, Yokohama, Kanagawa 2238522, Japan
[3] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[4] Seoul Natl Univ, Inst Appl Phys, Seoul 08826, South Korea
[5] Swiss Fed Inst Technol, Dept Phys, Inst Quantum Elect, CH-8092 Zurich, Switzerland
[6] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria
[7] IBM Corp, TJ Watson Res Ctr, IBM Quantum, Yorktown Hts, NY 10598 USA
[8] Univ Maryland, Lab Phys Sci, College Pk, MD 20740 USA
[9] Univ Maryland, Quantum Mat Ctr, College Pk, MD 20742 USA
[10] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[11] Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand
[12] Kavli Fdn, 5715 Mesmer Ave, Los Angeles, CA 90230 USA
[13] Suranaree Univ Technol, Ctr Excellence Adv Funct Mat, Nakhon Ratchasima 30000, Thailand
基金
新加坡国家研究基金会; 奥地利科学基金会; 欧盟地平线“2020”;
关键词
NUCLEAR-SPIN QUBITS; SOLID-STATE SPINS; SINGLE-ELECTRON; COHERENT CONTROL; SUPERCONDUCTING QUBITS; MAJORANA FERMIONS; COUPLED ELECTRON; DIAMOND SURFACE; LOGIC GATES; FLUX QUBIT;
D O I
10.1126/science.abb2823
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computing hardware technologies have advanced during the past two decades, with the goal of building systems that can solve problems that are intractable on classical computers. The ability to realize large-scale systems depends on major advances in materials science, materials engineering, and new fabrication techniques. We identify key materials challenges that currently limit progress in five quantum computing hardware platforms, propose how to tackle these problems, and discuss some new areas for exploration. Addressing these materials challenges will require scientists and engineers to work together to create new, interdisciplinary approaches beyond the current boundaries of the quantum computing field.
引用
收藏
页码:253 / +
页数:20
相关论文
共 352 条
[1]   Majorana qubits for topological quantum computing [J].
Aguado, Ramon ;
Kouwenhoven, Leo P. .
PHYSICS TODAY, 2020, 73 (06) :45-50
[2]  
Alexander A, 2017, J MATER RES, V32, P4067, DOI 10.1557/jmr.2017.322
[3]   Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning [J].
Allcock, D. T. C. ;
Guidoni, L. ;
Harty, T. P. ;
Ballance, C. J. ;
Blain, M. G. ;
Steane, A. M. ;
Lucas, D. M. .
NEW JOURNAL OF PHYSICS, 2011, 13
[4]   ANOMALOUS LOW-TEMPERATURE THERMAL PROPERTIES OF GLASSES AND SPIN GLASSES [J].
ANDERSON, PW ;
HALPERIN, BI ;
VARMA, CM .
PHILOSOPHICAL MAGAZINE, 1972, 25 (01) :1-&
[5]  
[Anonymous], 2011, Microwave Engineering
[6]  
[Anonymous], 1987, OPTICAL RESONANCE 2
[7]   Single-electron operations in a foundry-fabricated array of quantum dots [J].
Ansaloni, Fabio ;
Chatterjee, Anasua ;
Bohuslavskyi, Heorhii ;
Bertrand, Benoit ;
Hutin, Louis ;
Vinet, Maud ;
Kuemmeth, Ferdinand .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Magnetic Flux Noise in dc SQUIDs: Temperature and Geometry Dependence [J].
Anton, S. M. ;
Birenbaum, J. S. ;
O'Kelley, S. R. ;
Bolkhovsky, V. ;
Braje, D. A. ;
Fitch, G. ;
Neeley, M. ;
Hilton, G. C. ;
Cho, H. -M. ;
Irwin, K. D. ;
Wellstood, F. C. ;
Oliver, W. D. ;
Shnirman, A. ;
Clarke, John .
PHYSICAL REVIEW LETTERS, 2013, 110 (14)
[9]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[10]   Microwave losses in MgO, LaAlO3, and (La0.3Sr0.7)(Al0.65Ta0.35)O3 dielectrics at low power and in the millikelvin temperature range [J].
Arzeo, M. ;
Lombardi, F. ;
Bauch, T. .
APPLIED PHYSICS LETTERS, 2014, 104 (21)