Vortex generation in protoplanetary disks with an embedded giant planet

被引:121
作者
de Val-Borro, M.
Artymowicz, P.
D'Angelo, G.
Peplinski, A.
机构
[1] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[2] Stockholm Univ, AlbaNova Univ Ctr, S-10691 Stockholm, Sweden
[3] Univ Toronto, Toronto, ON M5S 1A4, Canada
[4] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA
关键词
planet and satellites : general; accretion; accretion disks; hydrodynamics; instabilities; methods : numerical; ROSSBY-WAVE INSTABILITY; ANGULAR-MOMENTUM TRANSPORT; THIN ACCRETION DISKS; VORTICITY GENERATION; NUMERICAL-SIMULATION; NONLINEAR STABILITY; DYNAMICAL STABILITY; HYDRODYNAMIC CODE; SHEAR INSTABILITY; TURBULENCE;
D O I
10.1051/0004-6361:20077169
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Vortices in protoplanetary disks can capture solid particles and form planetary cores within shorter timescales than those involved in the standard core-accretion model. Aims. We investigate vortex generation in thin unmagnetized protoplanetary disks with an embedded giant planet with planet to star mass ratio 10(-4) and 10(-3). Methods. Two-dimensional hydrodynamical simulations of a protoplanetary disk with a planet are performed using two different numerical methods. The results of the non-linear simulations are compared with a time-resolved modal analysis of the azimuthally averaged surface density profiles using linear perturbation theory. Results. Finite-difference methods implemented in polar coordinates generate vortices moving along the gap created by Neptunemass to Jupiter-mass planets. The modal analysis shows that unstable modes are generated with growth rate of order 0.3 ohm(K) for azimuthal numbers m = 4; 5; 6, where ohm(K) is the local Keplerian frequency. Shock-capturing Cartesian-grid codes do not generate very much vorticity around a giant planet in a standard protoplanetary disk. Modal calculations confirm that the obtained radial profiles of density are less susceptible to the growth of linear modes on timescales of several hundreds of orbital periods. Navier-Stokes viscosity of the order nu = 10(-5) ( in units of a(2) ohm(p)) is found to have a stabilizing effect and prevents the formation of vortices. This result holds at high resolution runs and using different types of boundary conditions. Conclusions. Giant protoplanets of Neptune-mass to Jupiter-mass can excite the Rossby wave instability and generate vortices in thin disks. The presence of vortices in protoplanetary disks has implications for planet formation, orbital migration, and angular momentum transport in disks.
引用
收藏
页码:1043 / 1055
页数:13
相关论文
共 58 条