Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries

被引:54
|
作者
Pan, Qing [1 ]
Dong, Ran [1 ]
Lv, Huizhen [1 ]
Sun, Xiaoqi [1 ]
Song, Yu [1 ]
Liu, Xiao-Xia [1 ]
机构
[1] Northeastern Univ, Dept Chem, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Vanadium oxide; Charge storage mechanism; High capacity; Kinetics study; Zinc-ion battery; CATHODE; PERFORMANCE; INSERTION; VANADATE;
D O I
10.1016/j.cej.2021.129491
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vanadium oxide (VOx) materials have gained considerable interest for rechargeable aqueous zinc ion batteries because of their structural and electrochemical diversities. However, the charge storage mechanism of the VOx cathode remains a topic of discussion. Herein we demonstrate a high-performance Zn/VOx cell where the binderfree VOx cathode with a layered structure is electrodeposited on a graphite substrate. This cathode with a high mass loading of 6 mg cm(-2) exhibits high specific capacity of 402 mAh g(-1) at the current density of 0.26 A g(-1) in 6 M ZnCl2 aqueous electrolyte. Good cycling stability of similar to 89% capacity retention can be achieved for 10,000 cycles at the fast discharge rate of 7.8 A g(-1). Electrochemical and spectroscopy analysis indicates that the VOx cathode experiences an interactive dual-ion storage mechanism, including sequential H+ and Zn2+ insertion, as well as H+/Zn(2+ )co-insertion processes during discharging. The H+ and Zn2+ insertion kinetics is also studied. Results identify that excessive H+ storage in the initial discharge region will block the subsequent Zn2+ insertion and thus decrease the discharge capacity. The interfacial charge transfer and the ion diffusion processes of the dual-ion storage in VOx are crucial to achieving good electrochemical performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Boosting proton storage in layered vanadium oxides for aqueous zinc-ion batteries
    Wu, Tzu-Ho
    Lin, Wei-Sheng
    ELECTROCHIMICA ACTA, 2021, 394
  • [2] Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes
    Wang, Lulu
    Huang, Kuo-Wei
    Chen, Jitao
    Zheng, Junrong
    SCIENCE ADVANCES, 2019, 5 (10)
  • [3] Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries
    Gong, Jiangfeng
    Li, Hao
    Zhang, Kaixiao
    Zhang, Zhupeng
    Cao, Jie
    Shao, Zhibin
    Tang, Chunmei
    Fu, Shaojie
    Wang, Qianjin
    Wu, Xiang
    NANOMATERIALS, 2022, 12 (09)
  • [4] Application of vanadium phosphate in aqueous zinc-ion batteries
    Huang Q.-F.
    Pan R.-M.
    Peng H.-D.
    Wang Y.-Q.
    Shi X.-Y.
    Cai J.-J.
    Shao L.-Y.
    Sun Z.-P.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (07): : 1175 - 1186
  • [5] Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries
    Min Chen
    Shu-Chao Zhang
    Zheng-Guang Zou
    Sheng-Lin Zhong
    Wen-Qin Ling
    Jing Geng
    Fang-An Liang
    Xiao-Xiao Peng
    Yang Gao
    Fa-Gang Yu
    RareMetals, 2023, 42 (09) : 2868 - 2905
  • [6] Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries
    Chen, Min
    Zhang, Shu-Chao
    Zou, Zheng-Guang
    Zhong, Sheng-Lin
    Ling, Wen-Qin
    Geng, Jing
    Liang, Fang-An
    Peng, Xiao-Xiao
    Gao, Yang
    Yu, Fa-Gang
    RARE METALS, 2023, 42 (09) : 2868 - 2905
  • [7] Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries
    Min Chen
    Shu-Chao Zhang
    Zheng-Guang Zou
    Sheng-Lin Zhong
    Wen-Qin Ling
    Jing Geng
    Fang-An Liang
    Xiao-Xiao Peng
    Yang Gao
    Fa-Gang Yu
    Rare Metals, 2023, 42 : 2868 - 2905
  • [8] The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries
    Yang, Gongzheng
    Li, Qian
    Ma, Kaixuan
    Hong, Cheng
    Wang, Chengxin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) : 8084 - 8095
  • [9] Aqueous Zinc-ion Batteries
    Xie, Zhiying
    Zheng, Xinhua
    Wang, Mingming
    Yu, Haizhou
    Qiu, Xiaoyan
    Chen, Wei
    PROGRESS IN CHEMISTRY, 2023, 35 (11) : 1701 - 1726
  • [10] Amorphous hydrated vanadium oxide with enlarged interlayer spacing for aqueous zinc-ion batteries
    Kim, Dong-Wan (dwkim1@korea.ac.kr), 1600, Elsevier B.V. (420):