Ti2Nb10O29 anchored on Aspergillus Oryzae spore carbon skeleton for advanced lithium ion storage

被引:18
作者
Wang, C. H. [1 ]
Huang, L. [1 ]
Zhong, Y. [1 ]
Tong, X. L. [2 ]
Gu, C. D. [1 ]
Xia, X. H. [1 ]
Zhang, Lingjie [1 ]
Wang, X. L. [1 ]
Tu, J. P. [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Key Lab Adv & Applicat Batteries Zhejiang Prov, Hangzhou 310027, Peoples R China
[2] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Conversat, Taiyuan 030001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Ti2Nb10O29; Spore carbon; Anode; Lithium ion batteries; HIGH-PERFORMANCE ANODE; HIGH-RATE CAPABILITY; FACILE SYNTHESIS; TINB2O7; ANODE; ELECTROCHEMICAL PERFORMANCE; MOLYBDENUM BRONZE; DOPED GRAPHENE; LONG-LIFE; BATTERIES; ELECTRODE;
D O I
10.1016/j.susmat.2021.e00272
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High-performance lithium ion batteries (LIBs) with high energy/power density are always the persistent pursuit of people. High-quality anode is the key point for the performance improvement of LIBs. In this work, a facile combined strategy is proposed to construct integrated TNO/AOSC electrode, in which Aspergillus Oryzae Spore Carbon (AOSC) conductive matrix is employed to hold Ti2Nb10O29 (TNO) nanoparticles. The TNO/AOSC not only shortens electron/ion transfer pathway on account of the nanostructure of TNO, but also provides better chemical stability from AOSC skeleton. Accordingly, the preeminent rate capacity (135.2 mA h g(-1) at 10C) and relatively superior cycle stability (a capacity of 149.8 mA h g(-1) after 200 cycles at 1C) are obtained for the TNO/AOSC, much better than TNO counterpart. The superior performance of the TNO/AOSC can be ascribed to the beneficial synergistic factors on enhanced electronic conductivity and solider structure from AOSC substrate. This intriguing design strategy may trigger interest for design of other high-quality electrodes in LIBs. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 56 条
[1]   Graphene oxide-templated synthesis of ternary oxide nanosheets for high-performance Li-ion battery anodes [J].
AbdelHamid, Ayman A. ;
Soh, Jun Hui ;
Yu, Yue ;
Ying, Jackie Y. .
NANO ENERGY, 2018, 44 :399-410
[2]   Porosity- and Graphitization-Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium-Metal Anode [J].
An, Yongling ;
Tian, Yuan ;
Wei, Hao ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (09)
[3]   TiNb2O7/Graphene hybrid material as high performance anode for lithium-ion batteries [J].
Ashish, A. G. ;
Arunkumar, P. ;
Babu, Binson ;
Manikandan, P. ;
Sarang, Som ;
Shaijumon, M. M. .
ELECTROCHIMICA ACTA, 2015, 176 :285-292
[4]   Designing an intrinsically safe organic electrolyte for rechargeable batteries [J].
Chen, Jiahang ;
Naveed, Ahmad ;
Nuli, Yanna ;
Yang, Jun ;
Wang, Jiulin .
ENERGY STORAGE MATERIALS, 2020, 31 :382-400
[5]   Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage [J].
Chen, Shuangqiang ;
Bao, Peite ;
Wang, Guoxiu .
NANO ENERGY, 2013, 2 (03) :425-434
[6]   New Avenue for Limiting Degradation in NanoLi4Ti5O12 for Ultrafast-Charge Lithium-Ion Batteries: Hybrid Polymer -Inorganic Particles [J].
Daigle, Jean-Christophe ;
Asakawa, Yuichiro ;
Beaupre, Melanie ;
Vieillette, Rene ;
Laul, Dharminder ;
Trudeau, Michel ;
Zaghib, Karim .
NANO LETTERS, 2017, 17 (12) :7372-7379
[7]   Fabrication of TiNb2O7 thin film electrodes for Li-ion micro-batteries by pulsed laser deposition [J].
Daramalla, V. ;
Penki, Tirupathi Rao ;
Munichandraiah, N. ;
Krupanidhi, S. B. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 213 :90-97
[8]   Electrochemical behavior of interconnected Ti2Nb10O29 nanoparticles for high-power Li-ion battery anodes [J].
De Pham-Cong ;
Kim, Jinwoo ;
Van Tan Tran ;
Kim, Su Jae ;
Jeong, Se-Young ;
Choi, Jun-Hee ;
Cho, Chae Ryong .
ELECTROCHIMICA ACTA, 2017, 236 :451-459
[9]   Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage [J].
Deng, Shengjue ;
Chao, Dongliang ;
Zhong, Yu ;
Zeng, Yinxiang ;
Yao, Zhujun ;
Zhan, Jiye ;
Wang, Yadong ;
Wang, Xiuli ;
Lu, Xihong ;
Xia, Xinhui ;
Tu, Jiangping .
ENERGY STORAGE MATERIALS, 2018, 12 :137-144
[10]   SBA-15 confined synthesis of TiNb2O7 nanoparticles for lithium-ion batteries [J].
Fei, Ling ;
Xu, Yun ;
Wu, Xiaofei ;
Li, Yuling ;
Xie, Pu ;
Deng, Shuguang ;
Smirnov, Sergei ;
Luo, Hongmei .
NANOSCALE, 2013, 5 (22) :11102-11107