Arithmetic purity of strong approximation for homogeneous spaces

被引:10
作者
Cao, Yang [1 ]
Liang, Yongqi [2 ]
Xu, Fei [3 ]
机构
[1] Max Planck Inst Math, Bonn, Germany
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, 105 Xisanhuanbeilu, Beijing 100048, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2019年 / 132卷
关键词
Strong approximation; Purity; Brauer-Manin obstruction; (Linear) algebraic groups; Bruhat decomposition; Homogeneous spaces; BRAUER-MANIN OBSTRUCTION; INTEGRAL POINTS; VARIETIES; FIELD;
D O I
10.1016/j.matpur.2019.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any open subset U of a semi-simple simply connected quasi-split linear algebraic group G with codim(G \ U, G) >= 2 over a number field satisfies strong approximation by establishing a fibration of G over a toric variety. We also prove a similar result of strong approximation with Brauer-Manin obstruction for a partial equivariant smooth compactification of a homogeneous space where all invertible functions are constant and the semi-simple part of the linear algebraic group is quasi-split. Some semi-abelian varieties of any given dimension where the complements of a rational point do not satisfy strong approximation with Brauer-Manin obstruction are given. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:334 / 368
页数:35
相关论文
共 51 条
  • [1] [Anonymous], 1980, PRINCETON MATH SERIE
  • [2] [Anonymous], 2014, Math. Sci. Res. Inst. Publ
  • [3] Manin obstruction to strong approximation for homogeneous spaces
    Borovoi, Mikhail
    Demarche, Cyril
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2013, 88 (01) : 1 - 54
  • [4] Bosch BLR90 S., 1990, Ergeb. Math. Grenzgeb., P21
  • [5] Browning T.D., 2015, ARXIV150907744
  • [6] Cao Y., 2016, T AM MATH SOC
  • [7] STRONG APPROXIMATION WITH BRAUER-MANIN OBSTRUCTION FOR TORIC VARIETIES
    Cao, Yang
    Xu, Fei
    [J]. ANNALES DE L INSTITUT FOURIER, 2018, 68 (05) : 1879 - 1908
  • [8] Strong approximation with Brauer-Manin obstruction for groupic varieties
    Cao, Yang
    Xu, Fei
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 117 : 727 - 750
  • [9] Strong approximation for varieties with a linear group action
    Cao, Yang
    [J]. COMPOSITIO MATHEMATICA, 2018, 154 (04) : 773 - 819
  • [10] Pathologies of the Brauer-Manin obstruction
    Colliot-Thelene, Jean-Louis
    Pal, Ambrus
    Skorobogatov, Alexei N.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (3-4) : 799 - 817