Arithmetic purity of strong approximation for homogeneous spaces

被引:10
作者
Cao, Yang [1 ]
Liang, Yongqi [2 ]
Xu, Fei [3 ]
机构
[1] Max Planck Inst Math, Bonn, Germany
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, 105 Xisanhuanbeilu, Beijing 100048, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2019年 / 132卷
关键词
Strong approximation; Purity; Brauer-Manin obstruction; (Linear) algebraic groups; Bruhat decomposition; Homogeneous spaces; BRAUER-MANIN OBSTRUCTION; INTEGRAL POINTS; VARIETIES; FIELD;
D O I
10.1016/j.matpur.2019.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any open subset U of a semi-simple simply connected quasi-split linear algebraic group G with codim(G \ U, G) >= 2 over a number field satisfies strong approximation by establishing a fibration of G over a toric variety. We also prove a similar result of strong approximation with Brauer-Manin obstruction for a partial equivariant smooth compactification of a homogeneous space where all invertible functions are constant and the semi-simple part of the linear algebraic group is quasi-split. Some semi-abelian varieties of any given dimension where the complements of a rational point do not satisfy strong approximation with Brauer-Manin obstruction are given. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:334 / 368
页数:35
相关论文
共 51 条
[1]  
[Anonymous], 1980, PRINCETON MATH SERIE
[2]  
[Anonymous], 2014, Math. Sci. Res. Inst. Publ
[3]   Manin obstruction to strong approximation for homogeneous spaces [J].
Borovoi, Mikhail ;
Demarche, Cyril .
COMMENTARII MATHEMATICI HELVETICI, 2013, 88 (01) :1-54
[4]  
Bosch BLR90 S., 1990, Ergeb. Math. Grenzgeb., P21
[5]  
Browning T.D., 2015, ARXIV150907744
[6]  
Cao Y., 2016, T AM MATH SOC
[7]   STRONG APPROXIMATION WITH BRAUER-MANIN OBSTRUCTION FOR TORIC VARIETIES [J].
Cao, Yang ;
Xu, Fei .
ANNALES DE L INSTITUT FOURIER, 2018, 68 (05) :1879-1908
[8]   Strong approximation with Brauer-Manin obstruction for groupic varieties [J].
Cao, Yang ;
Xu, Fei .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 117 :727-750
[9]   Strong approximation for varieties with a linear group action [J].
Cao, Yang .
COMPOSITIO MATHEMATICA, 2018, 154 (04) :773-819
[10]   Pathologies of the Brauer-Manin obstruction [J].
Colliot-Thelene, Jean-Louis ;
Pal, Ambrus ;
Skorobogatov, Alexei N. .
MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (3-4) :799-817