Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis:: regulation by photosynthetic redox control

被引:156
作者
Steinbrenner, J [1 ]
Linden, H [1 ]
机构
[1] Univ Konstanz, Lehrstuhl Physiol & Biochem Pflanzen, D-78434 Constance, Germany
关键词
astaxanthin; carotenoid biosynthesis; green algae; Haematococcus pluvialis; lycopene beta cyclase; redox regulation;
D O I
10.1023/A:1023948929665
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The unicellular green alga Haematococcus pluvialis accumulates large amounts of the red ketocarotenoid astaxanthin when exposed to various stress situations such as salt stress and high light intensities. Here, the light regulation of Haematococcus carotenoid biosynthesis was examined. Isolation and characterization of the lycopene cyclase gene involved in carotenoid biosynthesis was carried out using a functional complementation approach. Subsequently, gene expression of lycopene cyclase, phytoene synthase, phytoene desaturase and carotenoid hydroxylase was analysed in green flagellate cells. All four genes revealed higher transcript levels in response to increased illumination. Not only the induction of astaxanthin biosynthesis but also carotenoid gene expression was found to be correlated with the redox state of the photosynthetic electron transport. In accordance with this result, increased transcript levels for carotenoid biosynthesis genes were detected under both blue and red light conditions. The application of different inhibitors of the photosynthetic electron flow indicated that the photosynthetic plastoquinone pool functions as the redox sensor for the up-regulation of carotenoid biosynthesis genes. These results suggested that in Haematococcus not only the specific astaxanthin pathway but also general carotenoid biosynthesis is subject to photosynthetic redox control.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 50 条
[1]  
Allen JF, 2000, PHILOS T R SOC B, V355, P1351, DOI 10.1098/rstb.2000.0697
[2]   PHOTOSYNTHESIS - REGULATION BY REDOX SIGNALING [J].
ALLEN, JF ;
ALEXCIEV, K ;
HAKANSSON, G .
CURRENT BIOLOGY, 1995, 5 (08) :869-872
[3]  
Boger P, 1981, Photosynth Res, V2, P61, DOI 10.1007/BF00036166
[4]   Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii [J].
Bohne, F ;
Linden, H .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2002, 1579 (01) :26-34
[6]  
BOUSSIBA S, 1992, METHOD ENZYMOL, V213, P386
[7]   Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis [J].
Breitenbach, J ;
Misawa, N ;
Kajiwara, S ;
Sandmann, G .
FEMS MICROBIOLOGY LETTERS, 1996, 140 (2-3) :241-246
[8]   Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation [J].
Cunningham, FX ;
Pogson, B ;
Sun, ZR ;
McDonald, KA ;
DellaPenna, D ;
Gantt, E .
PLANT CELL, 1996, 8 (09) :1613-1626
[9]   Genes and enzymes of carotenoid biosynthesis in plants [J].
Cunningham, FX ;
Gantt, E .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :557-583
[10]  
Davies B.H., 1976, Chemistry and Biochemistry of Plant Pigments, V2, P38