ON STABILITY OF A FUNCTIONAL EQUATION OF QUADRATIC TYPE

被引:7
作者
Brzdek, J. [1 ]
Jablonska, E. [2 ]
Moslehian, M. S. [3 ]
Pacho, P. [1 ]
机构
[1] Pedag Univ, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] Rzeszow Univ Technol, Dept Math, Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
[3] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159, Mashhad 91775, Iran
关键词
Hyers-Ulam stability; p-Wright convexity; fixed point; quadratic equation; FIXED-POINT APPROACH;
D O I
10.1007/s10474-016-0602-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some stability results for the equation Af(px * ry) + Bf(qx * sy) = Cf(x) + Df(y), in the class of functions mapping a groupoid (X, *) into a Banach space Y, where p, q, r, s: X -> X are endomorphisms of the groupoid, and A, B, C, D are fixed scalars. Particular cases of the equation are the equation of the p-Wright affine functions, the additive Cauchy equation, the Jensen equation, the quadratic equation and the general linear equation (in two variables).
引用
收藏
页码:160 / 169
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[2]   Hyperstability of the Jensen functional equation [J].
Bahyrycz, A. ;
Piszczek, M. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) :353-365
[3]   On Approximately p-Wright Affine Functions in Ultrametric Spaces [J].
Bahyrycz, Anna ;
Brzdek, Janusz ;
Piszczek, Magdalena .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
[4]   RECENT DEVELOPMENTS OF THE CONDITIONAL STABILITY OF THE HOMOMORPHISM EQUATION [J].
Brzdek, Janusz ;
Fechner, Wlodzimierz ;
Moslehian, Mohammad Sal ;
Sikorska, Justyna .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (03) :278-326
[5]   Stability of the equation of the p-Wright affine functions [J].
Brzdek, Janusz .
AEQUATIONES MATHEMATICAE, 2013, 85 (03) :497-503
[6]   A fixed point approach to stability of functional equations [J].
Brzdek, Janusz ;
Chudziak, Jacek ;
Pales, Zsolt .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6728-6732
[7]   Fixed Points and Generalized Hyers-Ulam Stability [J].
Cadariu, L. ;
Gavruta, L. ;
Gavruta, P. .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[8]   APPLICATIONS OF FIXED POINT THEOREMS TO THE HYERS - ULAM STABILITY OF FUNCTIONAL EQUATIONS - A SURVEY [J].
Cieplinski, Krzysztof .
ANNALS OF FUNCTIONAL ANALYSIS, 2012, 3 (01) :151-164
[9]   Functional equations involving means [J].
Daroczy, Z. ;
Lajko, K. ;
Lovas, R. L. ;
Maksa, G. Y. ;
Pales, Z. S. .
ACTA MATHEMATICA HUNGARICA, 2007, 116 (1-2) :79-87
[10]  
Daróczy Z, 2006, P AM MATH SOC, V134, P521