DIFFERENTIAL GALOIS THEORIES AND TRANSCENDANCE

被引:7
作者
Bertrand, Daniel [1 ]
机构
[1] Univ Paris 06, Inst Math, F-75252 Paris 5, France
关键词
D O I
10.5802/aif.2507
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We survey recent work on the exponential and logarithmic cases of the functional Schanuel conjecture. Using various differential Galois theories, we present parallel (and sometimes new) proofs in the case of abelian varieties.
引用
收藏
页码:2773 / 2803
页数:31
相关论文
共 29 条
  • [1] ANDRE Y, 1992, COMPOS MATH, V82, P1
  • [2] [Anonymous], 2004, PANORAMAS SYNTHESES
  • [3] [Anonymous], 1974, I HAUTES ETUDES SCI
  • [4] SCHANUELS CONJECTURES
    AX, J
    [J]. ANNALS OF MATHEMATICS, 1971, 93 (02) : 252 - &
  • [5] AX J, 1972, AM J MATH, V94, P1195, DOI DOI 10.2307/2373569
  • [6] BAYS M, ARXIV08104457
  • [7] The Mumford-Tate group of 1-motives
    Bertolin, C
    [J]. ANNALES DE L INSTITUT FOURIER, 2002, 52 (04) : 1041 - 1059
  • [8] BERTRAND D, 2008, MANINS THEOREM KERNE
  • [9] BERTRAND D, 2008, LONDON MATH SOC LECT, V349, P41, DOI DOI 10.1017/C1309780511735226.004
  • [10] BERTRAND D, J AM MATH S IN PRESS