Vibration isolator carrying atomic force microscope's head

被引:25
作者
Ito, Shingo [1 ]
Unger, Severin [1 ]
Schitter, Georg [1 ]
机构
[1] TU Wien, Automat & Control Inst ACIN, Christian Doppler Lab Precis Engn Automated In Li, Gusshausstr 27-29, A-1040 Vienna, Austria
关键词
Atomic force microscopy; Vibration isolation; Voice coil actuators; Dual stage actuator; DESIGN; ACTUATORS;
D O I
10.1016/j.mechatronics.2017.04.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For high-resolution imaging in harsh environments this paper proposes a vibration isolation system that actively positions the head of an atomic force microscope (AFM) to maintain the vertical distance to the sample. On the moving platform carrying the AFM head, a displacement sensor is installed to detect the vibrations between the probe and the sample that impair the imaging quality. The detected vibrations are rejected by vertically moving the platform with feedback control. For the motion, flexure-guided Lorentz actuators are designed, such that the resulting suspension mode occurs around the major spectrum of the floor vibrations. By feedback control design, the high gain of the suspension mode is used to increase the open-loop gain for better vibration rejection. The experimental results demonstrate that the vibration isolation system can reject 99.3% of the vibrations. As a result, AFM imaging of nanoscale features is successfully performed in a vibrational environment. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
[31]   Erythrocyte stiffness probed using atomic force microscope [J].
Lekka, M ;
Fornal, M ;
Pyka-Fosciak, G ;
Lebed, K ;
Wizner, B ;
Grodzicki, T ;
Styczen, J .
BIORHEOLOGY, 2005, 42 (04) :307-317
[32]   On the dynamics of tapping mode atomic force microscope probes [J].
Bahrami, Arash ;
Nayfeh, Ali H. .
NONLINEAR DYNAMICS, 2012, 70 (02) :1605-1617
[33]   Friction coefficient mapping using the atomic force microscope [J].
Breakspear, S ;
Smith, JR ;
Nevell, TG ;
Tsibouklis, J .
SURFACE AND INTERFACE ANALYSIS, 2004, 36 (09) :1330-1334
[34]   Development and Testing of a XYZ Scanner for Atomic Force Microscope [J].
Cai, Kunhai ;
He, Xianbin ;
Tian, Yanling ;
Liu, Xianping ;
Cui, Liangyu .
EMBEC & NBC 2017, 2018, 65 :326-329
[35]   Nanographene device fabrication using atomic force microscope [J].
Ahmad, Muneer ;
Seo, Yongho ;
Choi, Young Jin .
MICRO & NANO LETTERS, 2013, 8 (08) :422-425
[36]   Optimization of Probe Parameters of Atomic Force Microscope Cantilever [J].
Kosobutskyy, Petro ;
Jaworski, Nazariy ;
Farmaha, Ihor ;
Kuzmynykh, Mariia .
2019 IEEE XVTH INTERNATIONAL CONFERENCE ON THE PERSPECTIVE TECHNOLOGIES AND METHODS IN MEMS DESIGN (MEMSTECH), 2019, :127-130
[37]   Integration of an Atomic Force Microscope in a Beamline Sample Environment [J].
Rodrigues, M. S. ;
Hrouzek, M. ;
Dhez, O. ;
Chevrier, J. ;
Comin, F. .
SRI 2009: THE 10TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION, 2010, 1234 :609-+
[38]   WiFi-controlled portable atomic force microscope [J].
Wang, Yingda ;
You, Qingyang ;
Zhang, Ziyao ;
Chen, Jiajun ;
Zhang, Haijun .
MICROSCOPY RESEARCH AND TECHNIQUE, 2019, 82 (09) :1455-1460
[39]   Preparation of nano-arrays by an atomic force microscope [J].
Breitenstein, Michael ;
Christmann, Alexander ;
Hoelzel, Ralph ;
Bier, Frank R. .
DNA-BASED NANODEVICES, 2008, 1062 :43-48
[40]   On the importance of precise calibration techniques for an atomic force microscope [J].
Emerson, RJ ;
Camesano, TA .
ULTRAMICROSCOPY, 2006, 106 (4-5) :413-422