The λ3-connectivity and κ3-connectivity of recursive circulants

被引:4
作者
Li, Hengzhe [1 ]
Wang, Jiajia [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
关键词
Recursive circulant; lambda(3)-connectivity; kappa(3)-edge-connectivity; GENERALIZED EDGE-CONNECTIVITY; PRODUCT GRAPHS; TREE-CONNECTIVITY; 3-CONNECTIVITY; BOUNDS;
D O I
10.1016/j.amc.2018.07.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a set of at least two vertices in a graph G. A subtree T of G is a S-Steiner tree if S subset of V(T). Two S-Steiner trees T-1 and T-2 are edge-disjoint (resp. internally disjoint) if E(T-1) boolean AND E(T-2) = empty set (resp. E(T-1) boolean AND E(T-2) = empty set and V(T-1) boolean AND V(T-2) = S). Let lambda(G)(S) (resp. kappa(G)(S)) be the maximum number of edge-disjoint (resp. internally disjoint) S-Steiner trees in G, and let lambda(k)(G) (kappa(k)(G)) be the minimum lambda(G)(S) (resp. kappa(G)(S)) for S ranges over all k-subsets of V(G). Clearly, lambda(2)(G) (resp. kappa(2)(G)) is the classical edge-connectivity lambda(G) (resp. connectivity kappa(G)). In this paper, we study the lambda(3)-connectivity and kappa(3)-connectivity of a recursive circulant G, determine lambda(3)(G) = delta(G) - 1 for each recursive circulant G, and kappa(3)(G) = delta(G) - 1 for each recursive circulant G except G congruent to G(2(m), 2). (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:750 / 757
页数:8
相关论文
共 32 条
  • [1] Bondy J.A., 2008, GTM, V244
  • [2] Chartrand G., 1984, Bombay Math., V2, P1
  • [3] Rainbow Trees in Graphs and Generalized Connectivity
    Chartrand, Gary
    Okamoto, Futaba
    Zhang, Ping
    [J]. NETWORKS, 2010, 55 (04) : 360 - 367
  • [4] Hamiltonian decomposition of generalized recursive circulant graphs
    Chen, Y-Chuang
    Tsai, Tsung-Han
    [J]. INFORMATION PROCESSING LETTERS, 2016, 116 (09) : 585 - 589
  • [5] DIRAC GA, 1960, MATH NACHR, V22, P61
  • [6] A MIXED VERSION OF MENGER THEOREM
    EGAWA, Y
    KANEKO, A
    MATSUMOTO, M
    [J]. COMBINATORICA, 1991, 11 (01) : 71 - 74
  • [7] Mixed Connectivity of Random Graphs
    Gu, Ran
    Shi, Yongtang
    Fan, Neng
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2017, PT I, 2017, 10627 : 133 - 140
  • [8] PENDANT TREE-CONNECTIVITY
    HAGER, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (02) : 179 - 189
  • [9] HIND H.R., 1996, C NUMER, V113, P179
  • [10] CONDITIONAL CONNECTIVITY MEASURES FOR LARGE MULTIPROCESSOR SYSTEMS
    LATIFI, S
    HEGDE, M
    NARAGHIPOUR, M
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1994, 43 (02) : 218 - 222