Rapid Antibiotic Susceptibility Analysis Using Microscopy and Machine Learning

被引:2
作者
Pyayt, Anna [1 ]
Khan, Rituparna [2 ]
Brzozowski, Robert [3 ]
Eswara, Prahathees [3 ]
Gubanov, Michael [2 ]
机构
[1] Univ S Florida, Dept Chem & Biomed Engn, Tampa, FL 33620 USA
[2] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[3] Univ S Florida, Dept Cell Biol Microbiol & Mol Biol, Tampa, FL 33620 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2020年
基金
美国国家卫生研究院;
关键词
bacteria; antibiotic susceptibility analysis; machine learning; SEVERE SEPSIS; BLOOD; IDENTIFICATION; PATHOGENS; DIAGNOSIS; TRENDS;
D O I
10.1109/BigData50022.2020.9378005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Here we present machine learning-based approach to automatic classify live and dead bacteria that can be used for rapid search for optimal antibiotics in case of bacterial infections. The patients must be promptly administered a most efficient medication because all delays significantly increase morbidity and mortality. We engineered a new technology allowing us to efficiently and rapidly capture bacterial cells from different biological samples and proceed with a rapid antibiotic susceptibility testing thereby bypassing the need to culture the bacterium. We developed a new machine learning and microscopy-based approach for rapid assessment of bacterial viability following tests with antibiotics. Also, we created a labeled dataset with similar to 100 images of live and dead bacteria stained with DAPI (DNA; blue) and FM4-64 (membrane; red) either treated with an antibiotic or untreated. We analyzed wild type (WT) and ampicillin-resistant (ampR) E. coli, WT and ampR S. aureus, and B. subtilis. For antibiotic susceptibility testing we used ampicillin, chloramphenicol and erythromycin. We extracted information about red and blue channels from the images and tried two machine learning classifiers for rapid assessment of viability of the bacteria. The classifiers Random Forest and J48 Decision Tree demonstrated precision 90.7% and 96%, recall 94.4% and 100%, and F-measure 92.5% and 95.2%, correspondingly, on 10-fold cross-validation.
引用
收藏
页码:5804 / 5806
页数:3
相关论文
共 13 条
[1]   Microorganism identification by mass spectrometry and protein database searches [J].
Demirev, PA ;
Ho, YP ;
Ryzhov, V ;
Fenselau, C .
ANALYTICAL CHEMISTRY, 1999, 71 (14) :2732-2738
[2]   Rapid Cytometric Antibiotic Susceptibility Testing Utilizing Adaptive Multidimensional Statistical Metrics [J].
Huang, Tzu-Hsueh ;
Ning, Xinghai ;
Wang, Xiaojian ;
Murthy, Niren ;
Tzeng, Yih-Ling ;
Dickson, Robert M. .
ANALYTICAL CHEMISTRY, 2015, 87 (03) :1941-1949
[3]   Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices [J].
Jorgensen, James H. ;
Ferraro, Mary Jane .
CLINICAL INFECTIOUS DISEASES, 2009, 49 (11) :1749-1755
[4]   Emerging Technologies for Rapid Identification of Bloodstream Pathogens [J].
Kothari, Atul ;
Morgan, Margie ;
Haake, David A. .
CLINICAL INFECTIOUS DISEASES, 2014, 59 (02) :272-278
[5]   Nationwide Trends of Severe Sepsis in the 21st Century (2000-2007) [J].
Kumar, Gagan ;
Kumar, Nilay ;
Taneja, Amit ;
Kaleekal, Thomas ;
Tarima, Sergey ;
McGinley, Emily ;
Jimenez, Edgar ;
Mohan, Anand ;
Khan, Rumi Ahmed ;
Whittle, Jeff ;
Jacobs, Elizabeth ;
Nanchal, Rahul .
CHEST, 2011, 140 (05) :1223-1231
[6]   A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples [J].
Lehmann, Lutz Eric ;
Hunfeld, Klaus-Peter ;
Emrich, Thomas ;
Haberhausen, Gerd ;
Wissing, Heimo ;
Hoeft, Andreas ;
Stueber, Frank .
MEDICAL MICROBIOLOGY AND IMMUNOLOGY, 2008, 197 (03) :313-324
[7]   Empiric Antimicrobial Therapy in Severe Sepsis and Septic Shock: Optimizing Pathogen Clearance [J].
Liang, Stephen Y. ;
Kumar, Anand .
CURRENT INFECTIOUS DISEASE REPORTS, 2015, 17 (07)
[8]  
Polat G, 2017, EURASIAN J MED, V49, P53, DOI 10.5152/eurasianjmed.2017.17062
[9]   Detection of Pathogens in Blood for Diagnosis of Sepsis and Beyond [J].
Sheldon, I. Martin .
EBIOMEDICINE, 2016, 9 :13-+
[10]   Two Decades of Mortality Trends Among Patients With Severe Sepsis: A Comparative Meta-Analysis [J].
Stevenson, Elizabeth K. ;
Rubenstein, Amanda R. ;
Radin, Gregory T. ;
Wiener, Renda Soylemez ;
Walkey, Allan J. .
CRITICAL CARE MEDICINE, 2014, 42 (03) :625-631