A hybrid approach for mining maximal hyperclique patterns

被引:0
作者
Huang, YC [1 ]
Xiong, H [1 ]
Wu, WL [1 ]
Zhang, ZN [1 ]
机构
[1] Univ Texas Dallas, Dallas, TX 75230 USA
来源
ICTAI 2004: 16TH IEEE INTERNATIONALCONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS | 2004年
关键词
data mining; H-confidence; hyperclique pattern;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A hyperclique pattern [12] is a new type of association pattern that contains items which are highly affiliated with each other. More specifically, the presence of an item in one transaction strongly implies the presence of every other item that belongs to the same hyperclique pattern. In this paper we present a new algorithm for mining maximal hyperclique patterns, which are desirable for pattern-based clustering methods [11]. This algorithm exploits key advantages of both the Depth First Search (DFS) strategy and the Breadth First Search (BFS) strategy. Indeed, we adapt the equivalence pruning method, one of the most efficient pruning methods of the DFS strategy, into the process of the BFS strategy. As demonstrated by our experimental results, the performance of our algorithm can be orders of magnitude faster than standard maximal frequent pattern mining algorithms, particularly at low levels of support.
引用
收藏
页码:354 / 361
页数:8
相关论文
共 12 条
  • [1] Agarwal R., 1994, P 20 INT C VER LARG, V487, P499
  • [2] AGARWAL R, 2001, TREE PROJECTION ALGO, P350
  • [3] Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
  • [4] BAYARDO R, 1998, P ACM SIGMOD C
  • [5] Bayardo R. J, 1999, P ACM SIGKDD C
  • [6] BURDICK D, 2001, P IEEE C DAT ENG
  • [7] Han J., 2000, P ACM SIGMOD INT C M, P1
  • [8] HUANG Y, 2004, UTDCS3404
  • [9] Rymon R, 1992, P 3 INT C PRINC KNOW
  • [10] Xiong H, 2004, SIAM PROC S, P279