Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions

被引:329
作者
Guo, Jingran [1 ,2 ]
Fu, Shubin [1 ,2 ]
Deng, Yuanpeng [1 ,2 ]
Xu, Xiang [1 ,2 ]
Laima, Shujin [1 ,2 ]
Liu, Dizhou [1 ,2 ]
Zhang, Pengyu [1 ,2 ]
Zhou, Jian [1 ,2 ]
Zhao, Han [1 ,2 ]
Yu, Hongxuan [1 ,2 ]
Dang, Shixuan [1 ,2 ]
Zhang, Jianing [1 ,2 ]
Zhao, Yingde [1 ,2 ]
Li, Hui [1 ,2 ]
Duan, Xiangfeng [3 ]
机构
[1] Harbin Inst Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disas, Minist Ind & Informat Technol, Harbin, Peoples R China
[2] Harbin Inst Technol, Key Lab Struct Dynam Behav & Control, Minist Educ, Harbin, Peoples R China
[3] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金;
关键词
HIGH-TEMPERATURE RESISTANCE; REACTIVE FORCE-FIELD; MOLECULAR-DYNAMICS; NANOFIBROUS AEROGELS; MECHANICAL-BEHAVIOR; ULTRALIGHT; STRENGTH; SIMULATIONS; EXPANSION; FRAMEWORK;
D O I
10.1038/s41586-022-04784-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal insulation under extreme conditions requires materials that can withstand complex thermomechanical stress and retain excellent thermal insulation properties at temperatures exceeding 1,000 degrees Celsius(1-3). Ceramic aerogels are attractive thermal insulating materials; however, at very high temperatures, they often show considerably increased thermal conductivity and limited thermomechanical stability that can lead to catastrophic failure(4-6). Here we report a multiscale design of hypocrystalline zircon nanofibrous aerogels with a zig-zag architecture that leads to exceptional thermomechanical stability and ultralow thermal conductivity at high temperatures. The aerogels show a near-zero Poisson's ratio (3.3 x 10(-4)) and a near-zero thermal expansion coefficient (1.2 x 10(-7 )per degree Celsius), which ensures excellent structural flexibility and thermomechanical properties. They show high thermal stability with ultralow strength degradation (less than 1 per cent) after sharp thermal shocks, and a high working temperature (up to 1,300 degrees Celsius). By deliberately entrapping residue carbon species in the constituent hypocrystalline zircon fibres, we substantially reduce the thermal radiation heat transfer and achieve one of the lowest high-temperature thermal conductivities among ceramic aerogels so far-104 milliwatts per metre per kelvin at 1,000 degrees Celsius. The combined thermomechanical and thermal insulating properties offer an attractive material system for robust thermal insulation under extreme conditions.
引用
收藏
页码:909 / +
页数:11
相关论文
共 66 条
[1]  
Aegerter M. A., 2011, AEROGELS HDB
[2]   Well-tempered metadynamics: A smoothly converging and tunable free-energy method [J].
Barducci, Alessandro ;
Bussi, Giovanni ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   Electrospinning: A fascinating fiber fabrication technique [J].
Bhardwaj, Nandana ;
Kundu, Subhas C. .
BIOTECHNOLOGY ADVANCES, 2010, 28 (03) :325-347
[5]   Ultralight, Strong, Three-Dimensional SiC Structures [J].
Chabi, Sakineh ;
Rocha, Victoria G. ;
Garcia-Tunon, Esther ;
Ferraro, Claudio ;
Saiz, Eduardo ;
Xia, Yongde ;
Zhu, Yanqiu .
ACS NANO, 2016, 10 (02) :1871-1876
[6]   Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility [J].
Chen, Mingwei .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2008, 38 :445-469
[7]   Hyperbolic 3D architectures with 2D ceramics [J].
Chhowalla, Manish ;
Jariwala, Deep .
SCIENCE, 2019, 363 (6428) :694-695
[8]   Silica aerogel; synthesis, properties and characterization [J].
Dorcheh, A. Soleimani ;
Abbasi, M. H. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 199 (1-3) :10-26
[9]   Interweaved Cellular Structured Ceramic Nanofibrous Aerogels with Superior Bendability and Compressibility [J].
Dou, Lvye ;
Zhang, Xinxin ;
Shan, Haoru ;
Cheng, Xiaota ;
Si, Yang ;
Yu, Jianyong ;
Ding, Bin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (49)
[10]   Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation [J].
Dou, Lvye ;
Cheng, Xiaota ;
Zhang, Xinxin ;
Si, Yang ;
Yu, Jianyong ;
Ding, Bin .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) :7775-7783