Constrained nonparametric estimation of input distance function

被引:8
作者
Sun, Kai [1 ]
机构
[1] Aston Univ, Aston Business Sch, Econ & Strategy Grp, Birmingham B4 7ET, W Midlands, England
关键词
Nonparametric estimation; Input distance function; Constraints; Elasticities; MONOTONICITY; EFFICIENCY; CONCAVITY; TRANSLOG;
D O I
10.1007/s11123-013-0372-9
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes a constrained nonparametric method of estimating an input distance function. A regression function is estimated via kernel methods without functional form assumptions. To guarantee that the estimated input distance function satisfies its properties, monotonicity constraints are imposed on the regression surface via the constraint weighted bootstrapping method borrowed from statistics literature. The first, second, and cross partial analytical derivatives of the estimated input distance function are derived, and thus the elasticities measuring input substitutability can be computed from them. The method is then applied to a cross-section of 3,249 Norwegian timber producers.
引用
收藏
页码:85 / 97
页数:13
相关论文
共 33 条
[1]  
[Anonymous], 1995, MULTIOUTPUT PRODUCTI
[2]  
[Anonymous], 2011, R: A Language and Environment for Statistical Computing
[3]  
Berndt E.R., 1973, J. Econom, V1, P81, DOI [10.1016/0304-4076(73)90007-9, DOI 10.1016/0304-4076(73)90007-9]
[4]  
Berwin A, 2011, QUADPROG FUNCTIONS S
[5]   THE MORISHIMA ELASTICITY OF SUBSTITUTION - SYMMETRY, CONSTANCY, SEPARABILITY, AND ITS RELATIONSHIP TO THE HICKS AND ALLEN ELASTICITIES [J].
BLACKORBY, C ;
RUSSELL, RR .
REVIEW OF ECONOMIC STUDIES, 1981, 48 (01) :147-158
[6]   A comparison of parametric and non-parametric distance functions: With application to European railways [J].
Coelli, T ;
Perelman, S .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 117 (02) :326-339
[7]   Environmental efficiency measurement with translog distance functions: A parametric approach [J].
Cuesta, Rafael A. ;
Knox Lovell, C. A. ;
Zofio, Jose L. .
ECOLOGICAL ECONOMICS, 2009, 68 (8-9) :2232-2242
[8]   Applying linear time-varying constraints to econometric models: With an application to demand systems [J].
Doran, HE ;
Rambaldi, AN .
JOURNAL OF ECONOMETRICS, 1997, 79 (01) :83-95
[9]   NONPARAMETRIC KERNEL REGRESSION WITH MULTIPLE PREDICTORS AND MULTIPLE SHAPE CONSTRAINTS [J].
Du, Pang ;
Parmeter, Christopher F. ;
Racine, Jeffrey S. .
STATISTICA SINICA, 2013, 23 (03) :1347-1371
[10]  
Fare R., 1985, MEASUREMENT EFFICIEN