Modeling the displacement speed in the flame surface density method for turbulent premixed flames at high pressures

被引:6
|
作者
Zhang, Shiming [1 ]
Lu, Zhen [1 ]
Yang, Yue [1 ,2 ,3 ]
机构
[1] Peking Univ, Coll Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[2] Peking Univ, CAPT, Beijing 100871, Peoples R China
[3] Peking Univ, BIC ESAT, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
LARGE-EDDY SIMULATION; DIFFERENTIAL DIFFUSION; COMBUSTION; EVOLUTION; METHANE; EQUATION; SCHEME; LES;
D O I
10.1063/5.0045750
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We propose a model of the local displacement speed for the large-eddy simulation (LES) of turbulent premixed combustion with the flame surface density (FSD) method. This model accounts for flame stretch and curvature effects in order to improve the prediction of LES-FSD for turbulent premixed flames with the non-unity Lewis number at high pressures. The proposed model is validated by a priori and a posteriori tests, with the direct numerical simulation (DNS) and LES-FSD of statistically planar turbulent premixed flames of lean hydrogen at 1 and 10atm and a range of turbulence intensities. The a priori test confirms that the proposed model accurately estimates the negative correlation of the displacement speed and the flame curvature. In the a posteriori test, the comparison of DNS and LES-FSD results demonstrates that the proposed model improves the prediction on the turbulent burning velocity and the turbulent flame thickness, compared with those from the existing displacement-speed model. The stretch effect in the present model leads to the rise of the turbulent burning velocity and the suppression of the "bending" phenomenon in LES-FSD, consistent with the DNS result.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A priori assessment of convolutional neural network and algebraic models for flame surface density of high Karlovitz premixed flames
    Ren, Jiahao
    Wang, Haiou
    Luo, Kun
    Fan, Jianren
    PHYSICS OF FLUIDS, 2021, 33 (03)
  • [22] On flame speed enhancement in turbulent premixed hydrogen-air flames during local flame-flame interaction
    Yuvraj
    Ardebili, Yazdan Naderzadeh
    Song, Wonsik
    Im, Hong G.
    Law, Chung K.
    Chaudhuri, Swetaprovo
    COMBUSTION AND FLAME, 2023, 257
  • [23] Flame Surface Density and Artificially Thickened Flame Combustion Models Applied to a Turbulent Partially-Premixed Flame
    Lomada, Sai
    Pfitzner, Michael
    Klein, Markus
    FLOW TURBULENCE AND COMBUSTION, 2024, 112 (03) : 729 - 750
  • [24] A Numerical Study on Premixed Turbulent Planar Ammonia/Air and Ammonia/Hydrogen/Air Flames: An Analysis on Flame Displacement Speed and Burning Velocity
    Tamadonfar, Parsa
    Karimkashi, Shervin
    Kaario, Ossi
    Vuorinen, Ville
    FLOW TURBULENCE AND COMBUSTION, 2023, 111 (02) : 717 - 741
  • [25] Application of a flame dictionary method in turbulent premixed flame modeling
    Calzada, ME
    Song, Y
    APPLIED MATHEMATICS LETTERS, 1997, 10 (02) : 111 - 115
  • [26] Effects of Karlovitz Number on Flame Surface Wrinkling in Turbulent Lean Premixed Methane-Air Flames
    Wang, Zhiyan
    Abraham, John
    COMBUSTION SCIENCE AND TECHNOLOGY, 2018, 190 (03) : 362 - 391
  • [27] Lewis Number Effects on Flame Speed Statistics in Spherical Turbulent Premixed Flames
    Ozel-Erol, G.
    Klein, M.
    Chakraborty, N.
    FLOW TURBULENCE AND COMBUSTION, 2021, 106 (04) : 1043 - 1063
  • [28] Generalized flame surface density transport conditional on flow topologies for turbulent H2-air premixed flames in different regimes of combustion
    Chakraborty, N.
    Papapostolou, V.
    Wacks, D. H.
    Klein, M.
    Im, H. G.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2018, 74 (07) : 1353 - 1367
  • [29] Local consumption speed of turbulent premixed flames - An analysis of "memory effects"
    Hemchandra, Santosh
    Lieuwen, Tim
    COMBUSTION AND FLAME, 2010, 157 (05) : 955 - 965
  • [30] Flame Curvature Distribution in High Pressure Turbulent Bunsen Premixed Flames
    Klein, M.
    Nachtigal, H.
    Hansinger, M.
    Pfitzner, M.
    Chakraborty, N.
    FLOW TURBULENCE AND COMBUSTION, 2018, 101 (04) : 1173 - 1187