GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR A NONCONSERVATIVE BITEMPERATURE EULER MODEL

被引:2
作者
Aregba-Driollet, Denise [1 ]
Brull, Stephane [1 ]
Peng, Yue-Jun [2 ,3 ]
机构
[1] Univ Bordeaux, CNRS, Bordeaux INP, IMB,UMR 5251, F-33400 Talence, France
[2] Univ Clermont Auvergne, F-63000 Clermont Ferrand, France
[3] CNRS, LMBP, F-63000 Clermont Ferrand, France
关键词
nonconservative hyperbolic; partial dissipation; symmetrization; energy estimates; Euler type model for plasmas; DISSIPATIVE HYPERBOLIC SYSTEMS; RELAXATION LIMIT; GAS-DYNAMICS; EQUATIONS; SINGULARITIES; BEHAVIOR;
D O I
10.1137/20M1353812
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bitemperature Euler model describes a crucial step of inertial confinement fusion (ICF) when the plasma is quasineutral while ionic and electronic temperatures remain distinct. The model is written as a first-order hyperbolic system in nonconservative form with partially dissipative source terms. We consider the polytropic case for both ions and electrons with different gamma-law pressures. The system does not fulfill the Shizuta-Kawashima condition and, the physical entropy, which is a strictly convex function, does not provide a symmetrizer of the system. In this paper we exhibit a symmetrizer to apply the result on the local existence of smooth solutions in several space dimensions. In the one-dimensional case we establish energy and dissipation estimates leading to global existence for small perturbations of equilibrium states.
引用
收藏
页码:1886 / 1907
页数:22
相关论文
共 27 条
  • [1] [Anonymous], 2000, HYPERBOLIC SYSTEMS C
  • [2] MODELLING AND NUMERICAL APPROXIMATION FOR THE NONCONSERVATIVE BITEMPERATURE EULER MODEL
    Aregba-Driollet, D.
    Breil, J.
    Brull, S.
    Dubroca, B.
    Estibals, E.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (04): : 1353 - 1383
  • [3] Aregba-Driollet D, 2019, COMMUN MATH SCI, V17, P1135
  • [4] BOILLAT G, 1974, CR ACAD SCI A MATH, V278, P909
  • [5] A KINETIC APPROACH OF THE BI-TEMPERATURE EULER MODEL
    Brull, Stephane
    Dubroca, Bruno
    Prigent, Corentin
    [J]. KINETIC AND RELATED MODELS, 2020, 13 (01) : 33 - 61
  • [6] Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation
    Carbou, G.
    Hanouzet, B.
    Natalini, R.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 291 - 319
  • [7] The strong relaxation limit of the multidimensional isothermal Euler equations
    Coulombel, Jean-Francois
    Goudon, Thierry
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (02) : 637 - 648
  • [8] DalMaso G, 1995, J MATH PURE APPL, V74, P483
  • [9] GODUNOV SK, 1961, DOKL AKAD NAUK SSSR+, V139, P521
  • [10] Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy
    Hanouzet, B
    Natalini, R
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (02) : 89 - 117