Symbolic dynamics and Arnold diffusion

被引:16
作者
Cresson, J [1 ]
机构
[1] Univ Franche Comte, Equipe Math Besancon, F-25030 Besancon, France
关键词
Hamiltonian systems; hyperbolic tori; symbolic dynamics;
D O I
10.1016/S0022-0396(02)00053-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider hyperbolic tori of three degrees of freedom initially hyperbolic Hamiltonian systems. We prove that if the stable and unstable manifold of a hyperbolic torus intersect transversaly, then there exists a hyperbolic invariant set near a homoclinic orbit on which the dynamics is conjugated to a Bernoulli shift. The proof is based on a new geometrico-dynamical feature of partially hyperbolic systems, the transversality-torsion phenomenon, which produces complete hyperbolicity from partial hyperbolicity. We deduce the existence of infinitely many hyperbolic periodic orbits near the given torus. The relevance of these results for the instability of near-integrable Hamiltonian systems is then discussed. For a given transition chain, we construct chain of hyperbolic periodic orbits. Then we easily prove the existence of periodic orbits of arbitrarily high period close to such chain using standard results on hyperbolic sets. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:269 / 292
页数:24
相关论文
共 22 条
[1]  
Alekseev V.M., 1968, Math. USSR Sb., V5, P73, DOI [10.1070/SM1968v005n01ABEH002587, DOI 10.1070/SM1968V005N01ABEH002587]
[2]  
ARNOLD V, 1966, SOV MATH DOKL, V5, P581
[3]   On the distribution of free path lengths for the periodic Lorentz gas [J].
Bourgain, J ;
Golse, F ;
Wennberg, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 190 (03) :491-508
[4]  
CHIERCHIA L, 1994, ANN I H POINCARE-PHY, V60, P1
[5]   A λ-lemma for partially hyperbolic tori [J].
Cresson, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (01) :65-70
[6]  
Cresson J, 2003, DISCRETE CONT DYN S, V9, P451
[7]  
CRESSON J, 2001, CREATION HYPERBOLICI
[8]  
CRESSON J, 1997, THESIS OBSERVATOIRE, P188
[9]  
CRESSON J, 2000, PERIODIC ORBITS ARNO
[10]  
Easton R., 1981, CLASSICAL MECH DYNAM, V70, P55