Dilated Convolutions in Retinal Blood Vessels Segmentation

被引:21
作者
Lopes, Ana P. [1 ]
Ribeiro, Alexandrine [1 ]
Silva, Carlos A. [1 ]
机构
[1] Univ Minho, Dept Elect, Braga, Portugal
来源
2019 6TH IEEE PORTUGUESE MEETING IN BIOENGINEERING (ENBENG) | 2019年
关键词
Retinal blood vessel segmentation; Dilated convolution; Context information; IMAGES;
D O I
10.1109/enbeng.2019.8692520
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Segmentation of retinal blood vessels allows a quantitative analysis of vessels, hence it helps to diagnose several cardiovascular and ophthalmologic diseases. Manual segmentation is time-consuming, therefore, an automatic method is needed. Dilated convolutions have been recently adopted for semantic segmentation task and higher performances have been achieved. In this paper, we investigate the use of dilated convolutions for retinal vessel segmentation. The proposed architectures are evaluated in the DRIVE dataset. The context information provided by dilated convolutions demonstrated to be valuable for the presented task, leading to more accurate segmentations. Our best model achieves accuracy, specificity and sensitivity of 0.9567, 0.9813 and 0.7903, respectively.
引用
收藏
页数:4
相关论文
共 17 条
  • [1] Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
  • [2] Optimizing the trainable B-COSFIRE filter for retinal blood vessel segmentation
    Badawi, Sufian A.
    Fraz, Muhammad Moazam
    [J]. PEERJ, 2018, 6
  • [3] DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
    Devalla, Sripad Krishna
    Renukanand, Prajwal K.
    Sreedhar, Bharathwaj K.
    Subramanian, Giridhar
    Zhang, Liang
    Perera, Shamira
    Mari, Jean-Martial
    Chin, Khai Sing
    Tun, Tin A.
    Strouthidis, Nicholas G.
    Aung, Tin
    Thiery, Alexandre H.
    Girard, Michael J. A.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2018, 9 (07): : 3244 - 3265
  • [4] Dumoulin V, 2018, Arxiv, DOI [arXiv:1603.07285, 10.48550/arXiv.1603.07285]
  • [5] Feng ZW, 2017, IEEE IMAGE PROC, P1742, DOI 10.1109/ICIP.2017.8296580
  • [6] Blood vessel segmentation methodologies in retinal images - A survey
    Fraz, M. M.
    Remagnino, P.
    Hoppe, A.
    Uyyanonvara, B.
    Rudnicka, A. R.
    Owen, C. G.
    Barman, S. A.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) : 407 - 433
  • [7] Holschneider M., 1990, Wavelets, P286
  • [8] Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function
    Hu, Kai
    Zhang, Zhenzhen
    Niu, Xiaorui
    Zhang, Yuan
    Cao, Chunhong
    Xiao, Fen
    Gao, Xieping
    [J]. NEUROCOMPUTING, 2018, 309 : 179 - 191
  • [9] Kanski's Clinical Ophthalmology: A Systematic Approach, 8th edition
    Karpecki, Paul M.
    [J]. OPTOMETRY AND VISION SCIENCE, 2015, 92 (10) : e386 - e386
  • [10] Li DP, 2015, PROC CVPR IEEE, P213, DOI 10.1109/CVPR.2015.7298617