Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification

被引:122
作者
Deng, Guorong [1 ,2 ]
Wang, Ting [3 ]
Alshehri, Abdulmohsen Ali [4 ]
Alzahrani, Khalid Ahmed [4 ]
Wang, Yan [2 ]
Ye, Hejiang [5 ]
Luo, Yonglan [3 ]
Sun, Xuping [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 611731, Sichuan, Peoples R China
[3] China West Normal Univ, Chem Synth & Pollut Control Key Lab Sichuan Prov, Coll Chem & Chem Engn, Nanchong 637002, Sichuan, Peoples R China
[4] King Abdulaziz Univ, Fac Sci, Chem Dept, POB 80203, Jeddah 21589, Saudi Arabia
[5] Hosp Chengdu Univ Tradit Chinese Med, Chengdu 610072, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
FIXATION; AMMONIA; NH3; NANOSHEET;
D O I
10.1039/c9ta06523g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Industrially, NH3 production mainly relies on the energy-intensive Haber-Bosch process with the release of a large amount of CO2. Electrochemical fixation of N-2 to NH3 under ambient conditions is an environmentally friendly and sustainable alternative, but the N-2 reduction reaction (NRR) requires stable and efficient electrocatalysts. In this work, we report that the electrocatalytic NRR activity of Pd nanoparticles can be improved by surface modification with oxygen-rich tannic acid. The electrochemical test results in 0.1 M Na2SO4 suggest that such a catalyst achieves a large NH3 yield of 24.12 mu g h(-1) mg(cat.)(-1) and a high faradaic efficiency of 9.49% at -0.45 V vs. the reversible hydrogen electrode (RHE), rivaling the performances of most of the reported aqueous-based NRR electrocatalysts. In addition, it also shows strong long-term electrochemical stability.
引用
收藏
页码:21674 / 21677
页数:4
相关论文
共 35 条
[1]   Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles [J].
Ahmad, Tufail .
JOURNAL OF NANOTECHNOLOGY, 2014, 2014
[2]   Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle [J].
Bao, Di ;
Zhang, Qi ;
Meng, Fan-Lu ;
Zhong, Hai-Xia ;
Shi, Miao-Miao ;
Zhang, Yu ;
Yan, Jun-Min ;
Jiang, Qing ;
Zhang, Xin-Bo .
ADVANCED MATERIALS, 2017, 29 (03)
[3]  
Ertl G., 1991, Catalytic Ammonia Synthesis
[4]   Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes [J].
Fryzuk, MD ;
Love, JB ;
Rettig, SJ ;
Young, VG .
SCIENCE, 1997, 275 (5305) :1445-1447
[5]   Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators [J].
Gao, Shuyan ;
Zhu, Yingzheng ;
Chen, Ye ;
Tian, Miao ;
Yang, Yingjie ;
Jiang, Tao ;
Wang, Zhong Lin .
MATERIALS TODAY, 2019, 28 :17-24
[6]   Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions [J].
Guo, Chunxian ;
Ran, Jingrun ;
Vasileff, Anthony ;
Qiao, Shi-Zhang .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (01) :45-56
[7]   Hierarchical Cobalt Phosphide Hollow Nanocages toward Electrocatalytic Ammonia Synthesis under Ambient Pressure and Room Temperature [J].
Guo, Wenhan ;
Liang, Zibin ;
Zhao, Junliang ;
Zhu, Bingjun ;
Cai, Kunting ;
Zou, Ruqiang ;
Xu, Qiang .
SMALL METHODS, 2018, 2 (12)
[8]   Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage [J].
Hoffman, Brian M. ;
Lukoyanov, Dmitriy ;
Yang, Zhi-Yong ;
Dean, Dennis R. ;
Seefeldt, Lance C. .
CHEMICAL REVIEWS, 2014, 114 (08) :4041-4062
[9]   Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions [J].
Huang, Hehan ;
Xia, Li ;
Shi, Xifeng ;
Asiri, Abdullah M. ;
Sun, Xuping .
CHEMICAL COMMUNICATIONS, 2018, 54 (81) :11427-11430
[10]   Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions [J].
Huang, Hong ;
Gong, Feng ;
Wang, Yuan ;
Wang, Huanbo ;
Wu, Xiufeng ;
Lu, Wenbo ;
Zhao, Runbo ;
Chen, Hongyu ;
Shi, Xifeng ;
Asiri, Abdullah M. ;
Li, Tingshuai ;
Liu, Qian ;
Sun, Xuping .
NANO RESEARCH, 2019, 12 (05) :1093-1098