Functional error estimators for the adaptive discretization of inverse problems

被引:11
作者
Clason, Christian [1 ]
Kaltenbacher, Barbara [2 ]
Wachsmuth, Daniel [3 ]
机构
[1] Univ Duisburg Essen, Fac Math, D-45117 Essen, Germany
[2] Alpen Adria Univ Klagenfurt, Inst Math, Univ Str 65-67, A-9020 Klagenfurt, Austria
[3] Univ Wurzburg, Inst Math, Emil Fischer Str 30, D-97074 Wurzburg, Germany
基金
奥地利科学基金会;
关键词
parameter identification; adaptive discretization; banach spaces; sparsity regularization; ELLIPTIC CONTROL-PROBLEMS; PARAMETER-IDENTIFICATION; REGULARIZATION; APPROXIMATION; CONVERGENCE;
D O I
10.1088/0266-5611/32/10/104004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
So-called functional error estimators provide a valuable tool for reliably estimating the discretization error for a sum of two convex functions. We apply this concept to Tikhonov regularization for the solution of inverse problems for partial differential equations, not only for quadratic Hilbert space regularization terms but also for nonsmooth Banach space penalties. Examples include the measure-space norm (i.e., sparsity regularization) or the indicator function of an L-infinity ball (i.e., Ivanov regularization). The error estimators can be written in terms of residuals in the optimality system that can then be estimated by conventional techniques, thus leading to explicit estimators. This is illustrated by means of an elliptic inverse source problem with the above-mentioned penalties, and numerical results are provided for the case of sparsity regularization.
引用
收藏
页数:25
相关论文
共 47 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]  
[Anonymous], 1996, REGULARIZATION INVER
[3]  
[Anonymous], INVERSE PROBLEMS
[4]  
[Anonymous], 2002, J INVERSE ILL POSED
[5]   A posteriori error estimates for elliptic problems with Dirac delta source terms [J].
Araya, Rodolfo ;
Behrens, Edwin ;
Rodriguez, Rodolfo .
NUMERISCHE MATHEMATIK, 2006, 105 (02) :193-216
[6]   Adaptive finite element methods for the solution of inverse problems in optical tomography [J].
Bangerth, Wolfgang ;
Joshi, Amit .
INVERSE PROBLEMS, 2008, 24 (03)
[7]  
Bartels S, 2015, MATH COMPUT, V84, P1217
[8]   A posteriori error estimation for finite element discretization of parameter identification problems [J].
Becker, R ;
Vexler, B .
NUMERISCHE MATHEMATIK, 2004, 96 (03) :435-459
[9]   An adaptive hybrid FEM/FDM method for an inverse scattering problem in scanning acoustic microscopy [J].
Beilina, L ;
Clason, C .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (01) :382-402
[10]   A posteriori error estimation in computational inverse scattering [J].
Beilina, L ;
Johnson, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (01) :23-35