The minimum feedback arc set problem and the acyclic disconnection for graphs

被引:5
作者
Paulina Figueroa, Ana [1 ]
Hernandez-Cruz, Cesar [2 ]
Olsen, Mika [3 ]
机构
[1] ITAM, Dept Acad Matemat, Alvaro Obregon, Cdmx, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Ciudad Univ, Mexico City 04510, DF, Mexico
[3] Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Ciudad De Mexico, Cdmx, Mexico
关键词
Feedback arc set; Acyclic disconnection; Oriented planar graphs; np-completeness; TOURNAMENTS; DIGRAPH;
D O I
10.1016/j.disc.2017.02.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A minimum feedback arc set of a digraph D is a minimum set of arcs which removal leaves the resultant graph free of directed cycles; its cardinality is denoted by tau(1)(D). The acyclic disconnection of D, (omega) over right arrow (D), is defined as the maximum number of colors in a vertex coloring of D such that every directed cycle of D contains at least one monochromatic arc. In this article we study the relationship between the minimum feedback arc set and the acyclic disconnection of a digraph, we prove that the acyclic disconnection problem is NP-complete. We define the acyclic disconnection and the minimum feedback for graphs. We also prove that (omega) over right arrow (G)+ tau(1)(G) |V(G)| if G is a wheel, a grid or an outerplanar graph. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1514 / 1521
页数:8
相关论文
共 12 条
[1]   Ranking tournaments [J].
Alon, N .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (01) :137-142
[2]   On the acyclic disconnection and the girth [J].
Balbuena, Camino ;
Olsen, Mika .
DISCRETE APPLIED MATHEMATICS, 2015, 186 :13-18
[3]  
Bang-Jensen J., 2002, DIGRAPHS THEORY ALGO, P583
[4]   The minimum feedback arc set problem is NP-hard for tournaments [J].
Charbit, Pierre ;
Thomasse, Stephan ;
Yeo, Anders .
COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (01) :1-4
[5]   A FAST AND EFFECTIVE HEURISTIC FOR THE FEEDBACK ARC SET PROBLEM [J].
EADES, P ;
LIN, XM ;
SMYTH, WF .
INFORMATION PROCESSING LETTERS, 1993, 47 (06) :319-323
[6]   On the acyclic disconnection of multipartite tournaments [J].
Figueroa, A. P. ;
Llano, B. ;
Olsen, M. ;
Rivera-Campo, E. .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (10-11) :1524-1531
[7]   Arc-Disjoint Cycles and Feedback Arc Sets [J].
Florek, Jan .
JOURNAL OF GRAPH THEORY, 2014, 75 (04) :355-357
[8]  
Hanauer K, 2013, LECT NOTES COMPUT SC, V8165, P298, DOI 10.1007/978-3-642-45043-3_26
[9]   Circulant tournaments of prime order are tight [J].
Llano, Bernardo ;
Neumann-Lara, Victor .
DISCRETE MATHEMATICS, 2008, 308 (24) :6056-6063
[10]   Circular colorings of edge-weighted graphs [J].
Mohar, B .
JOURNAL OF GRAPH THEORY, 2003, 43 (02) :107-116