Time-periodic solutions of the compressible Navier-Stokes equations in R4

被引:0
作者
Jin, Chunhua [1 ,2 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 01期
关键词
Time-periodic solution; Compressible Navier-Stokes equations; Existence; Uniqueness;
D O I
10.1007/s00033-015-0605-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence of time-periodic solutions to the compressible Navier-Stokes equations effected by general form external force in R-N with N = 4. Using a fixed point method, we establish the existence and uniqueness of time-periodic solutions. This paper extends Ma, UKai, Yang's result [5], in which, the existence is obtained when the space dimension N >= 5.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 8 条
[1]  
[Anonymous], 1983, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[2]   Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow [J].
Brezina, Jan ;
Kagei, Yoshiyuki .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (06) :1132-1195
[3]   DECAY PROPERTIES OF SOLUTIONS TO THE LINEARIZED COMPRESSIBLE NAVIER-STOKES EQUATION AROUND TIME-PERIODIC PARALLEL FLOW [J].
Brezina, Jan ;
Kagei, Yoshiyuki .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (07)
[4]   Time-Periodic Solutions to the Full Navier-Stokes-Fourier System [J].
Feireisl, Eduard ;
Mucha, Piotr B. ;
Novotny, Antonin ;
Pokorny, Milan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (03) :745-786
[5]   Time periodic solutions of compressible Navier-Stokes equations [J].
Ma, Hongfang ;
Ukai, Seiji ;
Yang, Tong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (09) :2275-2293
[6]  
Matsumura A., 1988, LECT NOTES NUMERICAL, V10, P49
[8]  
Taylor ME, 2011, APPL MATH SCI, V117, P1, DOI 10.1007/978-1-4419-7049-7