Degree reduction of interval Bezier curves

被引:21
作者
Chen, FL [1 ]
Lou, WP [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
interval Bezier curve; interval arithmetic; degree reduction; CAD;
D O I
10.1016/S0010-4485(00)00021-X
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Interval Bezier curves are new representation forms of parametric curves that can embody a complete description of coefficient errors. Using this new representation, the problem of lack of robustness in all state-of-the-art CAD systems can be largely overcome. In this paper, we discuss the problem of bounding interval Bezier curves with lower degree interval Bezier curves. We propose two different methods-Linear Programming and Optimal Approximation to solve this problem and provide several examples to demonstrate the algorithms. The examples show that while the Linear Programming method generally gives quite good bound, the Optimal Approximation algorithm provides much tighter approximation interval curves than the previous methods. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:571 / 582
页数:12
相关论文
共 16 条
[1]   DEGREE REDUCTION OF BEZIER CURVES BY UNIFORM APPROXIMATION WITH END-POINT INTERPOLATION [J].
BOGACKI, P ;
WEINSTEIN, SE ;
XU, YS .
COMPUTER-AIDED DESIGN, 1995, 27 (09) :651-661
[2]   The geometry of optimal degree reduction of Bezier curves [J].
Brunnett, G ;
Schreiber, T ;
Braun, J .
COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (08) :773-788
[3]   DEGREE REDUCTION OF BEZIER CURVES [J].
ECK, M .
COMPUTER AIDED GEOMETRIC DESIGN, 1993, 10 (3-4) :237-251
[4]  
Eck M, 1995, COMPUT AIDED DESIGN, V27, P845, DOI 10.1016/0010-4485(95)00008-9
[5]   THE PROBLEMS OF ACCURACY AND ROBUSTNESS IN GEOMETRIC COMPUTATION [J].
HOFFMANN, CM .
COMPUTER, 1989, 22 (03) :31-&
[6]   Robust interval algorithm for surface intersections [J].
Hu, CY ;
Maekawa, T ;
Patrikalakis, NM ;
Ye, XZ .
COMPUTER-AIDED DESIGN, 1997, 29 (09) :617-627
[7]   Robust interval algorithm for curve intersections [J].
Hu, CY ;
Maekawa, T ;
Sherbrooke, EC ;
Patrikalakis, NM .
COMPUTER-AIDED DESIGN, 1996, 28 (6-7) :495-506
[8]   Robust interval solid modelling .2. Boundary evaluation [J].
Hu, CY ;
Patrikalakis, NM ;
Ye, XZ .
COMPUTER-AIDED DESIGN, 1996, 28 (10) :819-830
[9]   Robust interval solid modelling .1. Representations [J].
Hu, CY ;
Patrikalakis, NM ;
Ye, XZ .
COMPUTER-AIDED DESIGN, 1996, 28 (10) :807-817
[10]  
Lachance M. A., 1988, Computer-Aided Geometric Design, V5, P195, DOI 10.1016/0167-8396(88)90003-9