Boundary augmented Lagrangian method for the Signorini problem

被引:2
作者
Zhang, Shougui [1 ]
Li, Xiaolin [1 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 400047, Peoples R China
基金
中国国家自然科学基金;
关键词
Signorini problem; augmented Lagrangian; fixed point; Steklov-Poincare operator; boundary integral equation; PROJECTION ITERATIVE ALGORITHM; ELEMENT METHOD; VARIATIONAL-INEQUALITIES; CONTACT PROBLEMS;
D O I
10.1007/s10492-016-0129-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An augmented Lagrangian method, based on boundary variational formulations and fixed point method, is designed and analyzed for the Signorini problem of the Laplacian. Using the equivalence between Signorini boundary conditions and a fixed-point problem, we develop a new iterative algorithm that formulates the Signorini problem as a sequence of corresponding variational equations with the Steklov-Poincar, operator. Both theoretical results and numerical experiments show that the method presented is efficient.
引用
收藏
页码:215 / 231
页数:17
相关论文
共 26 条
  • [1] PERCOLATION IN GENTLY SLOPING BEACHES
    AITCHISON, JM
    ELLIOTT, CM
    OCKENDON, JR
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 1983, 30 (03) : 269 - 287
  • [2] A numerical algorithm for the solution of Signorini problems
    Aitchison, JM
    Poole, MW
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 94 (01) : 55 - 67
  • [3] A STABILIZED LAGRANGE MULTIPLIER METHOD FOR THE ENRICHED FINITE-ELEMENT APPROXIMATION OF CONTACT PROBLEMS OF CRACKED ELASTIC BODIES
    Amdouni, Saber
    Hild, Patrick
    Lleras, Vanessa
    Moakher, Maher
    Renard, Yves
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04): : 813 - 839
  • [4] QUADRATIC FINITE ELEMENTS WITH NON-MATCHING GRIDS FOR THE UNILATERAL BOUNDARY CONTACT
    Auliac, S.
    Belhachmi, Z.
    Ben Belgacem, F.
    Hecht, F.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (04): : 1185 - 1205
  • [5] Error Estimates for an LDG Method Applied to Signorini Type Problems
    Bustinza, Rommel
    Sayas, Francisco-Javier
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (02) : 322 - 339
  • [6] An adaptation of Nitsche's method to the Tresca friction problem
    Chouly, Franz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (01) : 329 - 339
  • [7] GLOWINSKI R., 2008, Numerical Methods for Nonlinear Variational Problems
  • [8] HAN H, 1990, MATH COMPUT, V55, P115, DOI 10.1090/S0025-5718-1990-1023048-7
  • [9] Improvements of some projection methods for monotone nonlinear variational inequalities
    He, BS
    Liao, LZ
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 112 (01) : 111 - 128
  • [10] Hsiao GC, 2008, APPL MATH SCI, V164, P1