Similarity-based knowledge graph queries for recommendation retrieval

被引:9
作者
Wenige, Lisa [1 ]
Ruhland, Johannes [1 ]
机构
[1] Friedrich Schiller Univ Jena, Chair Business Informat Syst, Jena, Germany
关键词
Recommender systems; linked open data; information retrieval; SPARQL; semantic search; SKOS; SYSTEMS; SEARCH;
D O I
10.3233/SW-190353
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current retrieval and recommendation approaches rely on hard-wired data models. This hinders personalized customizations to meet information needs of users in a more flexible manner. Therefore, the paper investigates how similarity-based retrieval strategies can be combined with graph queries to enable users or system providers to explore repositories in the Linked Open Data (LOD) cloud more thoroughly. For this purpose, we developed novel content-based recommendation approaches. They rely on concept annotations of Simple Knowledge Organization System (SKOS) vocabularies and a SPARQL-based query language that facilitates advanced and personalized requests for openly available knowledge graphs. We have comprehensively evaluated the novel search strategies in several test cases and example application domains (i.e., travel search and multimedia retrieval). The results of the web-based online experiments showed that our approaches increase the recall and diversity of recommendations or at least provide a competitive alternative strategy of resource access when conventional methods do not provide helpful suggestions. The findings may be of use for Linked Data-enabled recommender systems (LDRS) as well as for semantic search engines that can consume LOD resources.
引用
收藏
页码:1007 / 1037
页数:31
相关论文
共 50 条
  • [41] Hierarchical Aggregation Based Knowledge Graph Embedding for Multi-task Recommendation
    Wang, Yani
    Zhang, Ji
    Zhou, Xiangmin
    Zhang, Yang
    WEB AND BIG DATA, PT III, APWEB-WAIM 2022, 2023, 13423 : 174 - 181
  • [42] Optimal Recommendation Models Based on Knowledge Representation Learning and Graph Attention Networks
    He, Qing
    Liu, Songyan
    Liu, Yao
    IEEE ACCESS, 2023, 11 : 19809 - 19818
  • [43] Learning Resource Recommendation Model Based on Collaborative Knowledge Graph Attention Networks
    Wang, Chong
    Yue, Peipei
    IEEE ACCESS, 2024, 12 : 153232 - 153242
  • [44] Knowledge Graph-Based Behavior Denoising and Preference Learning for Sequential Recommendation
    Liu, Hongzhi
    Zhu, Yao
    Wu, Zhonghai
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2490 - 2503
  • [45] Knowledge Graph Double Interaction Graph Neural Network for Recommendation Algorithm
    Kang, Shuang
    Shi, Lin
    Zhang, Zhenyou
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [46] HRS: Hybrid Recommendation System based on Attention Mechanism and Knowledge Graph Embedding
    Dong, Chunfang
    Ju, Xuchan
    Ma, Yue
    PROCEEDINGS OF 2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY WORKSHOPS AND SPECIAL SESSIONS: (WI-IAT WORKSHOP/SPECIAL SESSION 2021), 2021, : 406 - 413
  • [47] GRE: A GAT-Based Relation Embedding Model of Knowledge Graph for Recommendation
    Wang, Jihu
    Shi, Yuliang
    Cheng, Lin
    Zhang, Kun
    Chen, Zhiyong
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT II, 2022, 1492 : 77 - 91
  • [48] Explainable Similarity of Datasets Using Knowledge Graph
    Skoda, Petr
    Klimek, Jakub
    Necasky, Martin
    Skopal, Tomas
    SIMILARITY SEARCH AND APPLICATIONS (SISAP 2019), 2019, 11807 : 103 - 110
  • [49] A knowledge graph-based bio-inspired design approach for knowledge retrieval and reasoning
    Chen, Liuqing
    Cai, Zebin
    Jiang, Zhaojun
    Sun, Lingyun
    Childs, Peter
    Zuo, Haoyu
    JOURNAL OF ENGINEERING DESIGN, 2024,
  • [50] Context mining and graph queries on giant biomedical knowledge graphs
    Jens Dörpinghaus
    Andreas Stefan
    Bruce Schultz
    Marc Jacobs
    Knowledge and Information Systems, 2022, 64 : 1239 - 1262