Construction of conductive and flexible composite cathodes for room-temperature solid-state lithium batteries

被引:34
作者
He, Minghui [1 ,2 ]
Cui, Zhonghui [1 ]
Han, Feng [3 ]
Guo, Xiangxin [1 ,4 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[3] German Aerosp Ctr DLR, Inst Engn Thermodynam, D-70569 Stuttgart, Germany
[4] Qingdao Univ, Coll Phys, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state battery; Flexible composite cathodes; Stable interface; Cycle stability and rate capability; LI-ION BATTERY; POLYMER ELECTROLYTE; CUBIC LI7LA3ZR2O12; PERFORMANCE; STABILITY; ANODES; OXIDE; SUCCINONITRILE; IMPROVEMENT; INTERFACE;
D O I
10.1016/j.jallcom.2018.05.255
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interfacial issues arising from the poor interface contact and poor interface stability between the stiff solid-state electrolytes (SSEs) and the electrodes have restricted the development of successful solid-state batteries (SSBs). Herein, we demonstrate that constructing flexible composite cathodes by introducing conductive frameworks consisting of succinonitrile and lithium salt significantly improves the contact performance and interface stability between garnet solid electrolyte and LiFePO4 cathode, enabling the resulted SSBs cycling steadily with high capacity even at room temperature. The introduction of such flexible frameworks not only enables close contact between the cathode and the stiff SSE, but also bridges every electrode and electrolyte particles together forming interconnected three-dimensional ionic conductive paths, reducing the total resistance to one-half of the batteries without such frameworks. On the other hand, the network is flexible enough to accommodate the volume change of LiFeO4 during cycling. These advantages endow that the SSBs of Li/SSE/LiFePO4 with the flexible composite cathodes demonstrate an initial discharge capacity of 149.8 mAh g(-1) and the Coulombic efficiency of 99% after 100 cycles at 0.05 C under room temperature. This method demonstrated here to integrate electrodes and stiff electrolytes by introducing flexible components will provides inspirations for people to construct high-performance room-temperature SSBs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:157 / 162
页数:6
相关论文
共 50 条
  • [1] Synergistic Effect of Lithium Salts with Fillers and Solvents in Composite Electrolytes for Superior Room-Temperature Solid-State Lithium Batteries
    Liu, Li
    Zhang, Dechao
    Zhao, Jingwei
    Shen, Jiadong
    Li, Fangkun
    Yang, Yan
    Liu, Zhengbo
    He, Weixin
    Zhao, Weiming
    Liu, Jun
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (02): : 2484 - 2494
  • [2] Enabling high-energy flexible solid-state lithium ion batteries at room temperature
    Wu, Wei
    Wei, Zhenyao
    Wang, Jun
    Shang, Jian
    Wang, Man
    Chi, Shang-Sen
    Wang, Qingrong
    Du, Leilei
    Zhang, Tian
    Zheng, Zijian
    Deng, Yonghong
    CHEMICAL ENGINEERING JOURNAL, 2021, 424
  • [3] Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries
    Huang, Honglan
    Liu, Chao
    Liu, Ziya
    Wu, Yunyan
    Liu, Yifan
    Fan, Jinbo
    Zhang, Gen
    Xiong, Pan
    Zhu, Junwu
    ADVANCED POWDER MATERIALS, 2024, 3 (01):
  • [4] In Situ Modification Strategy for Development of Room-Temperature Solid-State Lithium Batteries with High Rate Capability
    Zhao, Jianghui
    Xie, Maoling
    Zhang, Haiyang
    Yi, Ruowei
    Hu, Chenji
    Kang, Tuo
    Zheng, Lei
    Cui, Ruiguang
    Chen, Hongwei
    Shen, Yanbin
    Chen, Liwei
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (12)
  • [5] Flexible Ionic Conducting Elastomers for All-Solid-State Room-Temperature Lithium Batteries
    Wei, Wei
    Xu, Zhixin
    Xu, Lu
    Zhang, Xinlin
    Xiong, Huiming
    Yang, Jun
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (12): : 6769 - 6773
  • [6] In situ construction of a flexible interlayer for durable solid-state lithium metal batteries
    Ci, Naixuan
    Zhang, Lin
    Li, Jianwei
    Li, Deping
    Cheng, Jun
    Sun, Qing
    Xi, Zhenjie
    Xu, Zhou
    Zhao, Guoqing
    Ci, Lijie
    CARBON, 2022, 187 : 13 - 21
  • [7] Zeolitic imidazolate framework enables practical room-temperature operation of solid-state lithium batteries
    Liang, Yifang
    Dong, Liwei
    Zhong, Shijie
    Yuan, Botao
    Dong, Yunfa
    Liu, Yuanpeng
    Yang, Chunhui
    Tang, Dongyan
    Han, Jiecai
    He, Weidong
    MATERIALS TODAY PHYSICS, 2021, 21
  • [8] Enabling room-temperature solid-state lithium-metal batteries with fluoroethylene carbonate-modified plastic crystal interlayers
    Lu, Ziheng
    Yu, Jing
    Wu, Junxiong
    Effat, Mohammed B.
    Kwok, Stephen C. T.
    Lyu, Yuqi
    Yuen, Matthew M. F.
    Ciucci, Francesco
    ENERGY STORAGE MATERIALS, 2019, 18 : 311 - 319
  • [9] Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries
    Wang, Tengrui
    Zhang, Ruiqi
    Wu, Yongmin
    Zhu, Guannan
    Hu, Chenchen
    Wen, Jiayun
    Luo, Wei
    JOURNAL OF ENERGY CHEMISTRY, 2020, 46 : 187 - 190
  • [10] Composite Cathodes with Succinonitrile-Based Ionic Conductors for Long-Cycle-Life Solid-State Lithium Metal Batteries
    Xin, Chengzhou
    Wen, Kaihua
    Xue, Chuanjiao
    Wang, Shuo
    Liang, Ying
    Wu, Xinbin
    Li, Liangliang
    Nan, Ce-Wen
    BATTERIES & SUPERCAPS, 2022, 5 (01)