Fine-Tuning and training of densenet for histopathology image representation using TCGA diagnostic slides

被引:111
作者
Riasatian, Abtin [1 ]
Babaie, Morteza [1 ]
Maleki, Danial [1 ]
Kalra, Shivam [1 ]
Valipour, Mojtaba [2 ]
Hemati, Sobhan [1 ]
Zaveri, Manit [1 ]
Safarpoor, Amir [1 ]
Shafiei, Sobhan [1 ]
Afshari, Mehdi [1 ]
Rasoolijaberi, Maral [1 ]
Sikaroudi, Milad [1 ]
Adnan, Mohd [1 ]
Shah, Sultaan [3 ]
Choi, Charles [3 ]
Damaskinos, Savvas [3 ]
Campbell, Clinton Jv [4 ]
Diamandis, Phedias [5 ]
Pantanowitz, Liron [6 ]
Kashani, Hany [1 ]
Ghodsi, Ali [2 ,7 ]
Tizhoosh, H. R. [1 ,7 ]
机构
[1] Univ Waterloo, Kimia Lab, 200 Univ Ave W, Waterloo, ON, Canada
[2] Univ Waterloo, Sch Comp Sci, 200 Univ Ave W, Waterloo, ON, Canada
[3] Huron Digital Pathol, 1620 King St North, St Jacobs, ON, Canada
[4] McMaster Univ, Dept Pathol & Mol Med, Hamilton, ON, Canada
[5] Univ Toronto, Lab Med & Pathobiol, Toronto, ON, Canada
[6] Univ Pittsburgh, Med Ctr, Dept Pathol, Pittsburgh, PA 15260 USA
[7] Vector Inst, 661 Univ Ave Suite 710, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Histopathology; Deep learning; Transfer learning; Image search; Image classification; Deep features; Image representation; TCGA; PATHOLOGY;
D O I
10.1016/j.media.2021.102032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature vectors provided by pre-trained deep artificial neural networks have become a dominant source for image representation in recent literature. Their contribution to the performance of image analysis can be improved through fine-tuning. As an ultimate solution, one might even train a deep network from scratch with the domain-relevant images, a highly desirable option which is generally impeded in pathology by lack of labeled images and the computational expense. In this study, we propose a new network, namely KimiaNet, that employs the topology of the DenseNet with four dense blocks, finetuned and trained with histopathology images in different configurations. We used more than 240,000 image patches with 1000 x 1000 pixels acquired at 20x magnification through our proposed "high-cellularity mosaic" approach to enable the usage of weak labels of 7126 whole slide images of formalinfixed paraffin-embedded human pathology samples publicly available through The Cancer Genome Atlas (TCGA) repository. We tested KimiaNet using three public datasets, namely TCGA, endometrial cancer images, and colorectal cancer images by evaluating the performance of search and classification when corresponding features of different networks are used for image representation. As well, we designed and trained multiple convolutional batch-normalized ReLU (CBR) networks. The results show that KimiaNet provides superior results compared to the original DenseNet and smaller CBR networks when used as feature extractor to represent histopathology images. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页数:11
相关论文
共 54 条
[1]  
[Anonymous], CHEXNET RADIOLOGIST
[2]   DeepLoc: prediction of protein subcellular localization using deep learning [J].
Armenteros, Jose Juan Almagro ;
Sonderby, Casper Kaae ;
Sonderby, Soren Kaae ;
Nielsen, Henrik ;
Winther, Ole .
BIOINFORMATICS, 2017, 33 (21) :3387-3395
[3]  
Babaie M., DEEP FEATURES TISSUE
[4]  
Bilaloglu S, 2019, EFFICIENT PAN CANC W, DOI 10.1101/633123
[5]   Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks [J].
Burt, Jeremy R. ;
Torosdagli, Neslisah ;
Khosravan, Naji ;
Raviprakash, Harish ;
Mortazi, Aliasghar ;
Tissavirasingham, Fiona ;
Hussein, Sarfaraz ;
Bagci, Ulas .
BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1089)
[6]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[7]   PanCancer insights from The Cancer Genome Atlas: the pathologist's perspective [J].
Cooper, Lee A. D. ;
Demicco, Elizabeth G. ;
Saltz, Joel H. ;
Powell, Reid T. ;
Rao, Arvind ;
Lazar, Alexander J. .
JOURNAL OF PATHOLOGY, 2018, 244 (05) :512-524
[8]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[9]   A new hyperparameters optimization method for convolutional neural networks [J].
Cui, Hua ;
Bai, Jie .
PATTERN RECOGNITION LETTERS, 2019, 125 :828-834
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848